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Abstract
For joint inference over multiple variables, a variety of structured prediction tech-
niques have been developed to model correlations among variables and thereby
improve predictions. However, many classical approaches suffer from one of two
primary drawbacks: they either lack the ability to model high-order correlations
among variables while maintaining computationally tractable inference, or they do
not allow to explicitly model known correlations. To address this shortcoming, we
introduce ‘Graph Structured Prediction Energy Networks,’ for which we develop
inference techniques that allow to both model explicit local and implicit higher-
order correlations while maintaining tractability of inference. We demonstrate the
general utility via tasks from the computer vision domain.

1 Introduction

Many machine learning tasks involve joint prediction of a set of variables. For instance, semantic
image segmentation infers the class label for every pixel in an image. To address joint prediction, it
is common to use deep nets which model probability distributions independently over the variables
(e.g., the pixels). The downside: correlations between different variables aren’t modeled explicitly.

A number of techniques, such as Structured SVMs [1], Max-Margin Markov Nets [2] and Deep
Structured Models [3, 4], directly model relations between output variables. But modeling the
correlations between a large number of variables is computationally expensive and therefore generally
impractical. Hence, SPENS [5, 6] were introduced. SPENs assign a score to an entire prediction,
which allows them to both harness global structure and learn complex relations between variables
tractably. However, Belanger and McCallum [5] note that it is easy to overfit SPENs to the training
data. Additionally, the inference techniques developed for SPENs do not enforce structural constraints
among output variables, i.e., they cannot support structured scores and discrete losses. An attempt
to combine locally structured scores with joint prediction was introduced very recently by Graber
et al. [7]. However, they require the score function to take a specific, restricted form, and inference is
formulated as a difficult-to-solve saddle-point optimization problem.

To address these concerns, we develop a new model which we refer to as ‘Graph Structured Prediction
Energy Network’ (GSPEN). GSPENs combine the capabilities of classical structured prediction
models and SPENs and have the ability to explicitly model local structure when known or assumed,
while providing the ability to learn an unknown or more global structure implicitly. Additionally, the
proposed GSPEN formulation generalizes the NLStruct approach by Graber et al. [7]. We show the
utility of GSPENs by comparing to related techniques on several tasks: optical character recognition,
image tagging, and multilabel classification. In general, we show that GSPENs are able to outperform
other models. Our implementation is available at https://github.com/cgraber/GSPEN. Please
see our main conference paper [8] for a more detailed description.

2 Background
Let x ∈ X represent the input provided to a model, such as a sentence or an image. In this work, we
consider tasks where the outputs take the form y = (y1, . . . , yK) ∈ Y :=

∏K
k=1 Yk, i.e., they are

vectors where the k-th variable’s domain is the discrete and finite set Yk = {1, . . . , |Yk|}. In general,
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the number of variables K which are part of the configuration y can depend on the observation x.
However, for readability only, we assume all y ∈ Y contain K entries.

Prior structured and unstructured models use a function F (x, y;w) which assigns a score to a given
configuration y conditioned on input x and is parameterized by weights w. Inference maximizes this
function with respect to y. Algorithms vary depending on the form of this function. Unstructured
models, such as feed-forward deep nets, assign a score to each label of variable yk irrespective of
the label choice of other variables. This permits to independently find the maximum score for each
variable yk. Classical structured models incorporate dependencies between variables by considering
functions that each depend on a subset r ⊆ {1, . . . ,K} of the output variables. We refer to the subset
of variables via yr = (yk)k∈r and use fr to denote the corresponding function. This formulation
allows to explicitly model relations between variables, but it comes at the price of more complex
inference which is generally NP-hard [9]. Approximations to this problem have been developed and
utilized successfully. But the complexity of these methods scales with the size of the largest region r.
For this reason, these models often consider only regions with one or two variables.

Structured Prediction Energy Networks (SPENs) [5] were motivated by the desire to represent
interactions between larger sets of output variables without incurring a high computational cost.
The SPEN score function takes the form F (x, p1, . . . , pK ;w) := T

(
f̄(x;w), p1, . . . , pK ;w

)
, where

f̄(x;w) is a learned feature representation of the input x, each pk is a one-hot vector, and T is a
function that takes these two terms and assigns a score. This representation of the labels, i.e., pk, is
used to facilitate inference, which is computed via gradient-based optimization techniques.

3 Graph Structured Prediction Energy Nets
Graph Structured Prediction Energy Networks (GSPENs) generalize all aforementioned models.
They combine both a classical structured component as well as a SPEN-like component to score
an entire set of predictions jointly. Additionally, GSPEN includes NLStruct as a special case. The
GSPEN score function is written as follows:

F (x, pR;w) := T
(
f̄(x;w), pR;w

)
,

where vector pR := (pr(yr))|r∈R,yr∈Yr contains one marginal per region per assignment of values to
that region. This formulation allows for the use of a structured score function while also allowing T to
score an entire prediction jointly. Hence, it is a combination of classical structured models and SPENs.
For instance, we can construct a GSPEN model by summing a classical structured model and a
multilayer perceptron that scores an entire label vector, in which case the score function takes the form
F (x, pR;w) :=

∑
r∈R

∑
yr∈Yr

pr(yr)fr(x, yr;w) + MLP (pR;w). Of course, this is one of many
possible score functions that are supported by this formulation. Notably, we recover the NLStruct
score function if we use T (f̄(x;w), pR;w) = T ′(f̄(x;w) ◦ pR;w) and let f̄(x;w) = fR(x;w).

Given this model, the inference problem is

max
pR∈M

T
(
f̄(x;w), pR;w

)
. (1)

The probabilities are constrained to lie in the marginal polytopeM. In addition, an entropy term
over the predictions may optionally be added to the objective to smooth optimization. The results
discussed below indicate that adding entropy leads to better-performing models. Also note that
it is possible to add a similar entropy term to the SPEN inference objective, which is mentioned
by Belanger and McCallum [5] and Belanger et al. [6].

For inference in GSPEN, SPEN procedures cannot be used since they do not maintain the additional
constraints imposed by the graphical model, i.e., the marginal polytopeM. We also cannot use the
inference procedure developed for NLStruct, as the GSPEN score function does not take the same
form. Therefore, in the following, we describe two inference algorithms that optimize the program
while maintaining structural constraints.

Frank-Wolfe. The Frank-Wolfe algorithm [10] is suitable because the objective in Eq. (1) is non-
linear while the constraints are linear. Specifically, using [10], we compute a linear approximation of
the objective at the current iterate, maximize this linear approximation subject to the constraints of
the original problem, and take a step towards this maximum. This inner maximization problem is
equivalent to inference for classical structured prediction. Hence we can use any technique developed
for this problem, e.g., [11–44].
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Figure 1: The GSPEN learning formulation, consisting of a Structured SVM (SSVM) objective with loss-
augmented inference. Note that each p

(i)
R are one-hot representations of labels yi.

Convergence guarantees for Frank-Wolfe have been proven when the overall objective is concave,
continuously differentiable, and has bounded curvature [45], which is the case when T has these
properties with respect to the marginals. This is true even when the inner optimization is only solved
approximately, which is often the case due to standard approximations used for structured inference.
When T is non-concave, convergence can still be guaranteed, but only to a local optimum [46]. Note
that entropy has unbounded curvature, therefore its inclusion in the objective precludes convergence
guarantees. Other variants of the Frank-Wolfe algorithm exist which improve convergence in certain
cases [47]. We do not experiment with these here as we didn’t observe any issues.

Structured Entropic Mirror Descent. Mirror descent, another constrained optimization algorithm,
is analogous to projected subgradient descent, albeit using a more general distance beyond the
Euclidean one [48]. This algorithm has been used in the past to solve inference for SPENs, where
entropy was used as the link function ψ and by normalizing over each coordinate independently [5].
We similarly use entropy in our case; given this choice, the “projection” step also reduces to a classical
structured prediction problem. When the inference objective is concave and Lipschitz continuous (i.e.,
when T has these properties), this algorithm has also been proven to converge [48]. Unfortunately, we
are not aware of any convergence results if the inner optimization problem is solved approximately
and if the objective is not concave. In practice, though, we did not observe any convergence issues
during experimentation.

Learning GSPEN Models. GSPENs assign a score to an input x and a prediction p. An SSVM
learning objective is applicable, which maximizes the margin between the scores assigned to the
correct prediction and the inferred result. The full SSVM learning objective with added loss-
augmented inference is summarized in Fig. 1. The learning procedure consists of computing the
highest-scoring prediction using one of the previously described inference procedures for each
example in a mini-batch and then updating the weights of the model towards making better predictions.

4 Experiments
To demonstrate the utility of our model and to compare inference and learning settings, we report re-
sults on the tasks of optical character recognition (OCR), image tagging, and multilabel classification.
For each experiment, we also use the following baselines: Unary (an unstructured model), Struct
(a classical structured model), SPEN, and NLStruct. For GSPENs, the inner structured inference
problems are solved using the same algorithm as for Struct. Additional experimental details, including
hyper-parameter settings, are provided in Appendix A.1.

Optical Character Recognition (OCR). For the OCR experiments, we generate data by rendering
letters on top of high-variance backgrounds; more details for this process can be found in Appendix
A.1. We create three versions of this dataset using different letter interpolation factors of α ∈
{0.3, 0.5, 0.7}, where each pixel in the final image is computed as αxbackground + (1− α)xletter. This
process was deliberately designed to ensure that information about the structure of the problem (i.e.,
which words exist in the data) is a strong signal, while the signal provided by each individual letter
image can be adjusted. The training, validation, and test set sizes for each dataset are 10,000, 2,000,
and 2,000, respectively. During training we vary the training data to be either 200, 1k or 10k.

To study the inference algorithm, we train four different GSPEN models on the dataset containing
1000 training points and using α = 0.5. Each model uses either Frank-Wolfe or Mirror Descent
and included/excluded the entropy term. To maintain tractability of inference, we fix a maximum
iteration count for each model. We additionally investigate the effect of this maximum count on final
performance. Additionally, we run this experiment by initializing from two different Struct models,
one being trained using entropy during inference and one being trained without entropy. The results
for this set of experiments are shown in Fig. 2a. Most configurations perform similarly across the
number of iterations, indicating these choices are sufficient for convergence. When initializing from
the models trained without entropy, we observe that both Frank-Wolfe without entropy and Mirror
Descent with entropy performed comparably. When initializing from a model trained with entropy,
the use of mirror descent with entropy led to much better results.
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Figure 2: Experimental results on OCR data. The dashed lines in (a) represent models trained from Struct
without entropy, while solid lines represent models trained from Struct with entropy.
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Table 1: Results for image tagging.

Table 2: Multilabel classification results for all models. En-
tries are macro F1 scores. The top results are taken from the
cited works.

Bibtex Bookmarks
Validation Test Validation Test

SPEN [5] – 42.2 – 34.4
DVN [51] – 44.7 – 37.1

Unary 43.3 44.1 38.4 37.4
Struct 45.8 46.1 39.7 38.9
SPEN 46.6 46.5 40.2 39.2
GSPEN 47.5 48.6 41.2 40.7

The results for all values of α using a train dataset size of 1000 are presented in Fig. 2b, and results
for all train dataset sizes with α = 0.5 are presented in Fig. 2c. We observe that, in all cases, GSPEN
outperforms all baselines. The degree to which GSPEN outperforms other models depends most
on the amount of train data: with a sufficiently large amount of data, SPEN and GSPEN perform
comparably. However, when less data is provided, GSPEN performance does not drop as sharply as
that of SPEN. It is also worth noting that GSPEN outperformed NLStruct by a large margin. The
NLStruct model is less stable due to its saddle-point formulation. Therefore it is much harder to
obtain good performance with this model.

Image Tagging. Next, we evaluate on the MIRFLICKR25k dataset [49], which consists of 25,000
images taken from Flickr. Each image is assigned a subset of 24 possible tags. The train/val/test sets
for these experiments consist of 10,000/5,000/10,000 images, respectively. The results are shown
in Fig. 1. GSPEN obtains similar test performance to the NLStruct model, and both outperform
SPEN. However, the NLStruct model was run for 100 iterations during inference without reaching
‘convergence’ (change of objective smaller than threshold), while the GSPEN model required an
average of 69 iterations to converge at training time and 52 iterations to converge at test time. Our
approach has the advantage of requiring fewer variables to maintain during inference and requiring
fewer iterations of inference to converge. The final test losses for SPEN, NLStruct and GSPEN are
2.158, 2.037, and 2.029, respectively.

Multilabel Classification. We use the Bibtex and Bookmarks multilabel datasets [50]. They consist
of binary-valued input feature vectors, each of which is assigned some subset of 159/208 possible
labels for Bibtex/Bookmarks. We train unary and SPEN models with architectures similar to [5]
and [51]. The results are given in Table 2 alongside those taken from [5] and [51]. We found
that the Unary model performs similarly to or better than previous best results. Both SPEN and
Struct are able to improve upon Unary results. GSPEN outperforms all configurations, suggesting
that the contributions of the SPEN component and the Struct component to the score function are
complementary.

5 Conclusions
The GSPEN model combines the strengths of several prior works for structured prediction. It allows
machine learning practitioners to include inductive bias in the form of known structure into a model
while implicitly capturing higher-order correlations among output variables. The model formulation
described here is more general than previous attempts to combine explicit local and implicit global
structure modeling while not requiring inference to solve a saddle-point problem.
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A Appendix

A.1 Additional Experimental Details

General Details: Unless otherwise specified, all Struct models were trained by using the corre-
sponding pre-trained Unary model, fixing these parameters, and training pairwise potentials. All
SPEN models were trained by using the pre-trained Unary model, fixing these parameters, and
training the T function. Early stopping based on task performance on validation was used to select
the number of epochs for training. For SPEN, GSPEN, and Struct models, loss-augmented infer-
ence was used where the loss function equals the sum of the 0-1 losses per output variable, i.e.,
L(ŷ, y) :=

∑n
i=1 1[ŷi 6= yi] where n is the number of output variables.

OCR: For the OCR experiments, we generate data by selecting a list of 50 common 5-letter English
words, such as ‘close,’ ‘other,’ and ‘world.’ To create each data point, we choose a word from this
list and render each letter as a 28x28 pixel image by selecting a random image of the letter from
the Chars74k dataset [52], randomly shifting, scaling, rotating, and interpolating with a random
background image patch. A different pool of backgrounds and letter images was used for the training,
validation, and test splits of the data. The task is to identify the words given 5 ordered images. We
create three versions of this dataset using different interpolation factors of α ∈ {0.3, 0.5, 0.7}, where
each pixel in the final image is computed as αxbackground + (1− α)xletter.

The Unary model is a single 3-layer multilayer perceptron (MLP) with ReLU activations, hidden
layer sizes of 200, and a dropout layer after the first linear layer with keep probability 0.5. Scores
for each image were generated by independently passing them into this network. Both Struct and
GSPEN use a graph with one pairwise region per pair of adjacent letters, for a total of 4 pairs.
Linear potentials are used, containing one entry per per per set of assignments of values to the
variable represented by that pair. The score function for both SPEN and GSPEN takes the form
F (x, p;w) =

∑
r∈R

∑
yr∈Yr

pr(yr)br(x, y;w) + T (B(x), p), where in the SPEN caseR contains
only unary regions and in the GSPEN caseR consists of the graph used by Struct. Each br represents
the outputs of the same model as Unary/Struct for SPEN/GSPEN, respectively, and B(x) represents
the vector (br(x, yi;w)|yr∈Yr

). For every SPEN and GSPEN model trained, T is a 2-layer MLP with
softplus activations, an output size of 1, and either 500, 1000, or 2000 hidden units. These hidden
sizes as well as the number of epochs of training for each model were determined based on task
performance on the validation data. Message-passing inference used in both Struct and GSPEN ran
for 10 iterations. GSPEN models were trained by using the pre-trained Struct model, fixing these
parameters, and training the T function. The NLStruct model consisted of a 2-layer MLP with 2834
hidden units, an output size of 1, and softplus activations. We use the same initialization described by
Graber et al. [7] for their word recognition experiments, where the first linear layer was initialized
to the identity matrix and the second linear layer was initialized to a vector of all 1s. NLStruct
models were initialized from the Struct models trained without entropy and used fixed potentials.
The inference configuration described by Graber et al. [7] was used, where inference was run for 100
iterations with averaging applied over the final 50 iterations.

All settings for the OCR experiments used a mini-batch size of 128 and used the Adam optimizer,
with Unary, SPEN, and GSPEN using a learning rate of 10−4 and Struct using a learning rate of 10−3.
Gradients were clipped to a norm of 1 before updates were applied. Inference in both SPEN and
GSPEN were run for a maximum of 100 iterations. Inference was terminated early for both models
if the inference objective for all datapoints in the minibatch being processed changed by less than
0.0001.

Three different versions of every model, initialized using different random seeds, were trained for
these experiments. The plots represent the average of these trials, and the error represented is the
standard deviation of these trials.

Tagging: We initialize the structured portion of our GSPEN model for the image tagging experiment
using the pre-trained DeepStruct model described by Graber et al. [7], which consists of unary
potentials produced from an AlexNet architecture [53] and linear pairwise potentials of the form
fi,j(yi, yj ,W ) = Wi,j,xi,xj , i.e., containing one weight per pair in the graph per assignment of
values to that pair. A fully-connected pairwise graph was used. Both GSPEN and SPEN use the same
score function as in the OCR experiments, with the exception that the T function used for GSPEN is
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only a function of the beliefs and does not include the potentials as input. The T function for our
GSPEN model consists of a 2-layer MLP with 130 hidden units. It takes as input a concatenation
of the unary potentials generated by the AlexNet model and the current prediction. The T function
for the SPEN model has the same number of layers and hidden units. We used Frank-Wolfe without
entropy for both SPEN and GSPEN inference. Both models were trained using gradient descent with
a learning rate of 10−2, a momentum of 0.9, and a mini-batch size of 128. Once again, only the T
component was trained for GSPEN, and the pairwise potentials were initialized to a Struct model
trained using the settings described in Graber et al. [7].

The message-passing procedure used to solve the inner optimization problem for GSPEN was run
for 100 iterations per iteration of Frank-Wolfe. Inference for SPEN and GSPEN was run for 100
iterations and was terminated early if the inference objective for all datapoints in the minibatch being
processed changed by less than 0.0001.

Multilabel Classification: For the Bibtex dataset, 25 percent of the training data was set aside to
be used as validation data; this was not necessary for Bookmarks, which has a pre-specified validation
dataset. For prediction in both datasets and for all models, a threshold determining the boundary
between positive/negative label predictions was tuned on the validation dataset.

For the Bibtex dataset, the Unary model consists of a 3-layer MLP taking the binary feature vectors
as input and returning a 159-dimensional vector representing the potentials for label assignments
yi = 1; the potentials for y = 0 are fixed to 0. The Unary model uses ReLU activations, hidden unit
sizes of 150, and dropout layers before the first and second linear layers with keep probability of
0.5. The Struct model consists of a 2-layer MLP which also uses the feature vector as input, and it
contains 1000 hidden units and ReLU activations. The SPEN model uses the same scoring function
form as used in the previous experiments, except the T function is only a function of the prediction
vector and does not use the unary potentials as input. The T model consists of a 2-layer MLP which
takes the vector (pi(yi = 1))

59
i=1 as input. This model has 16 hidden units, an output size of 1, and

uses softplus activations. The GSPEN model was trained by starting from the SPEN model, fixing
these parameters, and training a pairwise model with the same architecture as the Struct model.

For the bookmarks dataset, the models trained use the same architectures with slightly different
configurations. the Unary model consists of a similar 3-layer MLP, except dropout is only applied
before the second linear layer. The Struct model uses the same architecture as the one trained on the
Bibtex data. The T model for SPEN/GSPEN uses 15 hidden units.

For both datasets and for both SPEN and GSPEN, mirror descent was used for inference with an
additional entropy term with a coefficient of 0.1; for Struct, a coefficient of 1 was used. Inference was
run for 100 iterations, with early termination as described previously using the same threshold. For
Struct and GSPEN, message passing inference was run for 5 iterations. The Unary model was trained
using gradient descent with a learning rate of 10−2 and a momentum of 0.9, while Struct, SPEN and
GSPEN were trained using the Adam optimizer with a learning rate of 10−4.
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