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Abstract

We propose Chirality Nets, a family of deep nets that is equivariant to the “chirality
transform,” i.e., the transformation to create a chiral pair. Using parameter shar-
ing, odd and even symmetry, we develop variants of standard building blocks of
deep nets that satisfy the equivariance property, including fully connected layers,
convolutional layers, batch-normalization, and LSTM/GRU cells. The proposed
layers lead to a more data efficient representation and a reduction in computation
due to their symmetry. To assess efficacy, we study three pose regression tasks:
3D pose estimation from video, 2D pose forecasting, and skeleton based activity
recognition. Our approach achieves/matches state-of-the-art results, with more
significant gains on small datasets and limited-data settings.

1 Introduction
Human pose regression tasks such as human pose estimation, human pose forecasting and skeleton
based action recognition, have numerous applications in video understanding, security and human-
computer interaction. For instance, collaborative virtual reality applications rely on accurate pose
estimation for which significant advances have been reported in recent years.

Recent approaches use supervised learning to address pose regression and employ deep nets. Input
and output of those nets depend on the task: inputs are typically 2D or 3D human pose key-points
stacked into a vector; the output may represent human pose key-points for pose estimation or a
classification probability for activity recognition. To improve accuracy of those tasks, a variety of
deep net architectures have been proposed [28, 3, 13, 23, 34, 39], generally relying on common
deep net building blocks, such as, fully connected, convolutional or recurrent layers. Unlike for
image datasets, to enlarge the size of human pose datasets, a reflection (left-right flipping) of the
pose coordinates as illustrated in step (1) of Fig. 1 is not sufficient. The chirality of the human pose
requires to additionally switch the labeling of left and right as illustrated in step (2) of Fig. 1. While
this two-step data augmentation is conceptually easy to employ during training, we argue that even
better accuracy is possible for human pose regression tasks if this chirality equivariance is directly
built into the deep net. Intuitively, the deep net doesn’t have to learn equivariance from data.

To encode this form of equivariance for human pose regression tasks, we propose “chirality nets.”
We develop chirality equivariant versions of commonly used layers. Specifically, we design and
prove equivariance for versions of fully connected, convolutional, batch-normalization, dropout, and
LSTM/GRU layers and element-wise non-linearities such as tanh or soft-sign. Please also see our
main conference paper [49] for a more detailed description.

We demonstrate the generalization and effectiveness of our approach on three pose regression tasks
over four datasets: 3D pose estimation on the Human3.6m [17] and HumanEva dataset [40], 2D pose
estimation on the Penn Action dataset [53] and skeleton-based action recognition on Kinetics-400
dataset [18]. Our approach achieves state-of-the-art results with guarantees on equivariance, lower
number of parameters, and robustness in low-resource settings.

∗Indicates equal contribution.
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Figure 1: Illustration of the chirality transformation. The transformation includes two operations, (1) a reflection
of the pose, i.e., a negation of the x-coordinates; and (2) a switch of the left / right joint labeling. The ordering of
the two operations are interchangeable.

2 Related Work
The input representation of deep nets for human pose is similar to pointsets. Prior work has explored
building permutation equivariant deep nets, i.e., any permutation of input elements results in the
same permutation of output elements. [51, 35] utilize parameter sharing to achieve permutation
equivariance. Following these works, graph nets generalize the family of permutation equvariant
networks [37, 21, 12, 11, 1]. For human pose, equivariance to all permutations is too strong of a
property. Recall, our aim is to build models equivariant to the chiral symmetry, which only involves a
specific permutation, e.g., the switch between left and right joints, shown in step (2) of Fig. 1. Most
relevant to our approach is the work by Ravanbakhsh et al. [36]. Ravanbakhsh et al. [36] explore
which type of equivariance can be achieved through parameter sharing. Their approach captures
one specific permutation in the pose symmetric transform, but does not capture the negation from
the reflection, shown in Fig. 1 step (1). In contrast, our approach considers both operations (1)
and (2) jointly, which leads to a different formulation. Lastly, to the best of our knowledge, [36]
only discusses theoretically the construction of equivariant networks. In this work, we design and
implement a variety of building blocks for deep nets and demonstrate the benefits on a wide range of
practical applications in human pose regression tasks.

3 Chirality Nets
Chirality nets can be applied to regression tasks on coordinates of joints for human pose, i.e., the
input corresponds to 2D or 3D coordinates of human joints. For readability, we just use the input and
output representations for a single frame. Note that for our experiments we generalize chirality nets
to multiple frames by introducing a time dimension. For human pose regression, the task is to learn
the parameters θ of a model Fθ by minimizing a loss function, L(θ) =

∑
(x,y)∈D `(Fθ(x),y) over

the training dataset D. Hereby, sample loss `(Fθ(x),y) compares prediction Fθ to ground-truth y.

We let x ∈ R|Jin|·|Din| denote the chirality net input, where Jin is the set of all joints and Din is the
dimension index set for an input coordinate. For example, Jin = {‘right wrist’, ‘right shoulder’, . . .}
and Din = {0, 1}, for 2D input joint coordinates. Similarly, we let y ∈ R|Jout|·|Dout| refer to the
chirality net output. Note that the dimension of the spatial coordinates at the input and output may
differ, e.g., prediction from 2D to 3D. Also, the number of joints may differ, e.g., when mapping
between different key-point sets.

3.1 Chirality Nets, Chirality Equivariance, and Chirality Transforms
Chirality nets exhibit chirality equivariance, i.e., their output is transformed in a “predefined manner”
given that the chirality transform is applied at the input. Note that the input and output dimensions
Din and Dout may differ. To define this chirality equivariance, we hence need to consider a pair of
transformations, one for the input data, T in, and one for the output data, T out. The corresponding
equivariance map is illustrated in Fig. 2 for the task of 2D to 3D pose estimation. Formally, we say a
function Fθ is chirality equivariant w.r.t. (T in, T out) if

T out(Fθ(x)) = Fθ(T in(x)) ∀x ∈ R|J
in||Din|.

To define the chirality transform on the input data, i.e., T in, we split the set of joints Jin into ordered
tuples of Jin

l , Jin
r , and Jin

c , each denoting left, right and center joints of the input. Importantly, these
tuples are sorted such that the corresponding left/right joints are at corresponding positions in the
tuple. We also split the dimension index set Din into Din

n and Din
p := Din\Din

n , indicating the
coordinates to, or not to, negate. For readability and without loss of generality, assume the dimensions
of the input x follow the order of Jin

l , Jin
r , Jin

c , i.e., x = [xl,xr,xc]. Within each vector x(·), we
place the coordinates in the set Din

n before the remaining ones, i.e., xl = [xln,xlp].
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Figure 2: Illustration of chirality equivariance for the task of 2D to 3D pose estimation.

Given this construction of the input x, the reflection illustrated in step (1) of Fig. 1 is a matrix
multiplication with a (|Jin||Din|)× (|Jin||Din|) diagonal matrix T in

neg, defined as follows:

T in
neg = diag([−1|Jinl |·|Dinn |,1|Jinl |·|Dinp |,−1|Jinr |·|Dinn |,1|Jinr |·|Dinp |,−1|Jinc |·|Dinn |,1|Jinc |·|Dinp |]),

where 1K indicates a vector of ones of length K. The switch operation illustrated in step (2) of
Fig. 1 is a matrix multiplication with a permutation matrix of dimension (|Jin||Din|)× (|Jin||Din|),
defined as follows:

T in
swi =

 0 I|Jin
l |·|Din| 0

I|Jin
l |·|Din| 0 0
0 0 I|Jin

c |·|Din|

 ,
where IK denotes an identity matrix of size K ×K. Given those matrices, the chirality transform of
the input T in(x) is obtained via T in(x) = T in

negT
in
swix. The chirality transform of the output, T out,

is defined similarly, replacing “in” with “out”. In the following, we introduce layers that satisfy
the (T in, T out) chirality equivariance property. This enables to construct a chirality net Fθ, as the
composition of equivariant layers remains equivariant. Note that (T in, T out) chirality equivariance
can be specified separately for every deep net layer which provides additional flexibility. In the
following we discuss how to construct layers which satisfy chirality equivariance.

3.2 Chirality Layers

Fully connected layer.2 A fully connected layer performs the mapping y = fFC(x;W, b) :=Wx+b.
We achieve equivariance through parameter sharing and odd symmetry:

W =



[
Wln,ln Wln,lp

Wlp,ln Wlp,lp

] [
Wln,rn Wln,rp

Wlp,rn Wlp,rp

] [
Wln,cn Wln,cp

Wlp,cn Wlp,cp

]
[
Wln,rn −Wln,rp

−Wlp,rn Wlp,rp

] [
Wln,ln −Wln,lp

−Wlp,ln Wlp,lp

] [
Wln,cn −Wln,cp

−Wlp,cn Wlp,cp

]
[
Wcn,ln Wcn,lp

0 Wcp,lp

] [
Wcn,ln −Wcn,lp

0 Wcp,lp

] [
Wcn,cn 0

0 Wcp,cp

]

, b =



[
bln
blp

]
[
−bln
blp

]
[
0
bcp

]

.

We color code the shared parameters using identical colors. Each W(·),(·) denotes a matrix, where
the first and the second subscript characterize the dimensions of the output and the input. For
example, Wln,rp computes the output’s left (l) joint’s negated (n) dimensions, from the input’s right
(r) joint’s non-negated, i.e., positive (p), dimensions. Note that Wln,rp is a matrix of dimension
|Jout

l | · |Dout
n | × |Jin

r | · |Din
p |. We refer to this layer as the chiral fully connected layer.

4 Experiments
3D human pose estimation can be decoupled into the tasks of 2D keypoint detection and 2D to
3D pose estimation. We focus on the latter task, i.e., given a sequence of 2D keypoints, the task
is to estimate the corresponding 3D human pose. Please see our main conference paper [49]

2Due to the page limit, we include a description of other layers in the supplementary material. Pytorch
implementations and unit-tests of the proposed layers are also part of the supplementary material. We have also
included a short Jupyter notebook to illustrate the key concepts.
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Approach Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Pavllo [34] (CVPR‘19) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Pavllo [34] (CVPR‘19)(†) 45.9 47.5 44.3 46.4 50.0 56.9 45.6 44.6 58.8 66.8 47.9 44.7 49.7 33.1 34.0 47.7
Pavllo [34] (CVPR‘19)(†, ‡) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Ours, single-frame 47.4 49.9 47.4 51.1 53.8 61.2 48.3 45.9 60.4 67.1 52.0 48.6 54.6 40.1 43.0 51.4
Ours (†) 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7

Table 1: Results on the Human3.6M dataset: reconstruction error using Protocol 1 (MPJPE) in mm. The best /
second result is boldface / underlined. † indicates temporal models, and ‡ indicates test-time augmentation.

Walk Jog Box Avg.
App. S1 S2 S3 S1 S2 S3 S1 S2 S3 -

Pavlakos [32] 22.3 19.5 29.7 28.9 21.9 23.8 – – – –
Pavlakos [33] 18.8 12.7 29.2 23.5 15.4 14.5 – – – –
Lee [23] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4 –
Pavllo [34] 14.1 10.4 46.8 21.1 13.3 14.0 23.8 34.5 32.3 31.1
Pavllo [34] (‡) 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32.0 30.8
Ours 15.2 10.3 47.0 21.8 13.1 13.7 22.8 31.8 31.0 30.6

Table 2: Results on HumanEva-I for multi-action (MA) mod-
els reported in Protocol 2 (P-MPJPE), lower the better. ‡
indicates test time augmentation.
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Figure 3: Comparisons between our approach
and [34] in limited data settings evaluated using
Protocol 1 on Human3.6M.

and supplementary material for additional results on other tasks. We evaluate on two standard
datasets, the Human3.6M [17] and the HumanEva-I [40]. We report the two standard metrics used in
prior work: Protocol 1 (MPJPE) which is the mean per-joint position error between the prediction
and ground-truth [29, 32, 34] and Protocol 2 (P-MPJPE) which is the error, after alignment, between
the prediction and ground-truth [29, 41, 13, 34].

Results. In Tab. 1, we report the performance on the Human3.6M data using Protocol 1 (MPJPE).
Our approach outperforms the state-of-the-art [34] which uses test-time augmentation by 0.1 mm
in overall average and achieves the best results in eight out of fifteen sub-categories. For the single-
frame models, we observe a more significant reduction in error of 0.4 mm over [34] with test
time augmentation. Additionally, when comparing without test-time augmentation, our approach
outperforms by 1 mm. We note that test-time augmentation employed by Pavllo et al. [34] involves
running the network twice for each input. In contrast, our approach only requires a single forward
pass. Next, on HumanEva-I dataset, we also observed lower error using Protocol 1. On average,
our approach achieves a 32.2mm error. This is a 0.8mm decrease over the current state-of-the-art of
33.0mm [34] and a 1.1mm decrease over [34] without test-time augmentation of 33.3mm.

We also performed evaluation using Protocol 2 (P-MPJPE). On Human3.6M we observe that our
approach performs worse than Pavllo et al. [34] by 0.3mm. We note that the loss function is chosen
to optimize Protocol 1, therefore our models are performing better at what they are optimized for. In
Tab. 2, we report the performance on HumanEva-I using Protocol 2 (P-MPJPE). Our model achieves
a 0.2 mm reduction in error over Pavllo et al. [34] on average. Most of the gain is obtained for the
boxing action, possibly due to the symmetric nature of the movement.

Limited data settings. A benefit of fewer model parameters is the potential to obtain better models
with less data. To confirm this, we perform experiments by varying the amount of training data,
starting from 0.1% of subject 1 (S1) to using three subjects S1, S5, S6. The results with comparison
to [34] are shown in Fig. 3. We observe that our approach consistently outperforms [34] in this low
resource settings, except at S1 0.1%.

5 Conclusion
We introduce chirality equivariance for pose regression tasks and develop deep net layers that satisfy
this property. Through parameter sharing and odd/even symmetry, we design equivariant versions
of commonly used layers in deep nets. With these equivariant layers at hand, we build Chirality
Nets, which guarantee equivariance from the input to the output. Our models naturally lead to a
reduction in trainable parameters and computation due to symmetry. Our experimental results on
three human pose regression tasks over four datasets demonstrate state-of-the-art performance and
the wide practical impact of the proposed layers.

Acknowledgments: This work is supported in part by NSF under Grant No. 1718221 and MRI
#1725729, UIUC, Samsung, 3M, Cisco Systems Inc. (Gift Award CG 1377144) and Adobe. We
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Supplementary material: Chirality Nets: Exploiting Structure in
Human Pose Regression
In this supplementary material we discuss some more related work about invariance and equivariance
in machine learning and computer vision as well as human pose regression tasks. We then provide an
additional details for equivariant layers, additional results and implementation details.

A Additional Related Work

Invariant and equivariant representation. Hand-crafted invariant and equivariant representations
have been utilized widely in computer vision systems for decades, e.g., scale invariance of SIFT [26],
orientation invariance of HOG [7], affine invariance of the Harris detector [30], shift-invariant systems
in image processing [44], etc.

These properties have also been adapted to learned representations. A widely known property is
the translation equivariance of convolutional neural nets (CNN) [22]: through spatial or temporal
parameter sharing, a shifted input leads to a shifted output. Group-equivariant CNNs extend the
equivariance to rotation, mirror reflection and translation [5] by replacing the shift operation with a
more general set of transformations. Other representations for building equivariance into deep nets
have also been proposed, e.g., the Symmetric Network [10], the Harmonic Network [46] and the
Spherical CNN [6].

The aforementioned works focus on deep nets where the input are images. While related, they are
not directly applicable to human pose. For example, a reflection with respect to the y-axis in the
image domain corresponds to a permutation of the pixel locations, i.e., swapping the pixel intensity
between each pixel’s reflected counterpart. In contrast, for human pose, where the input is a vector
representing the human joints’ spatial coordinates, a reflection corresponds to the negation of the
value for each of the joints reflected dimension.

The input representation of deep nets for human pose is more similar to pointsets. Prior work has
explored building permutation equivariant deep nets, i.e., any permutation of input elements results
in the same permutation of output elements. Both [51, 35] utilize parameter sharing to achieve
permutation equivariance. Following these works, graph nets generalize the family of permutation
equivariant networks and demonstrate success on numerous applications [37, 21, 12, 11, 1, 20, 50, 25].

Human pose applications. For 3D pose estimation from images, recent approaches utilize a two-
step approach: (1) 2D pose keypoints are predicted given a video; (2) 3D keypoints are estimated
given 2D joint locations. The 2D to 3D estimation is formulated as a regression task via deep
nets [32, 42, 29, 41, 8, 33, 48, 27, 13, 23, 34]. Capturing the temporal information is crucial
and has been explored in 3D pose estimation [13, 23] as well as in action recognition [43, 16],
video segmentation [14, 15] and learning of object dynamics [28, 31]. Most recently, Pavllo et al.
[34] propose to use temporal convolutions to better capture the temporal information for 3D pose
estimation over previous RNN based methods. They also performed train and test time augmentation
based on the chiral-symmetric transformation. For test time augmentation, they compute the output
for both the original input and the transformed input, using the average outputs as the final prediction.
In contrast to our work, we note that Pavllo et al. [34] need to transform the output of the transformed
input back to the original pose. To carefully assess the benefits of chirality nets, in this work, we
closely follow the experimental setup of Pavllo et al. [34].

For 2D keypoint forecasting, we follow the setup of standard temporal modeling: conditioning on
past observations to predict the future. To improve temporal modeling, recent works have utilized
different sequence to sequence models for this task [28, 3, 4]. In this work, we closely follow the
experimental setup of Chiu et al. [4].

For action recognition, skeleton based methods have been explored extensively recently [47, 52, 24,
39] due to robustness to illumination changes and cluttered background. Here we closely follow the
experimental setup of Yan et al. [47].
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B Additional Description for Equivariant Layers

B.1 Equivariant fully connected layers

A fully connected layer performs the mapping y = fFC(x;W, b) := Wx + b. Recall, we achieve
equivariance through parameter sharing and odd symmetry:

W =



[
Wln,ln Wln,lp

Wlp,ln Wlp,lp

] [
Wln,rn Wln,rp

Wlp,rn Wlp,rp

] [
Wln,cn Wln,cp

Wlp,cn Wlp,cp

]
[
Wln,rn −Wln,rp

−Wlp,rn Wlp,rp

] [
Wln,ln −Wln,lp

−Wlp,ln Wlp,lp

] [
Wln,cn −Wln,cp

−Wlp,cn Wlp,cp

]
[
Wcn,ln Wcn,lp

0 Wcp,lp

] [
Wcn,ln −Wcn,lp

0 Wcp,lp

] [
Wcn,cn 0

0 Wcp,cp

]

, b =



[
bln
blp

]
[
−bln
blp

]
[
0
bcp

]

.

Here, we prove that the design is chiral-equivariant. Through multiplying out the matrices, we can
show WT (x) + b = T (Wx+ b), as follows:

Proof:

x = [xln xlp xrn xrp xcn xcp]
T then T (x) = [−xrn xrp −xln xlp −xcn xcp]

T .

With linear algebra,

Wx+b =


Wln,ln(xln) +Wln,lp(xlp) +Wln,rn(xrn) +Wln,rp(xrp) +Wln,cn(xcn) +Wln,cp(xcp) + bln
Wlp,ln(xln) +Wlp,lp(xlp) +Wlp,rn(xrn) +Wlp,rp(xrp) +Wlp,cn(xcn) +Wlp,cp(xcp) + blp
Wln,rn(xln)−Wln,rp(xlp) +Wln,ln(xrn)−Wln,lp(xrp) +Wln,cn(xcn)−Wln,cp(xcp)− bln
−Wlp,rn(xln) +Wlp,rp(xlp)−W,lp,ln(xrn) +Wlp,lp(xrp)−Wlp,cn(xcn) +Wlp,cp(xcp) + blp

Wcn,ln(xln) +Wcn,lp(xlp) +Wcn,ln(xrn)−Wcn,lp(xrp) +Wcn,cn(xcn) + 0 · (xcp) + 0
0 · (xln) +Wcp,lp(xlp) + 0 · (xrn) +Wcp,lp(xrp) + 0 · (xcn) +Wcp,cp(xcp) + bcp



T (Wx+b) =


−Wln,rn(xln) +Wln,rp(xlp)−Wln,ln(xrn) +Wln,lp(xrp)−Wln,cn(xcn) +Wln,cp(xcp) + bln
−Wlp,rn(xln) +Wlp,rp(xlp)−W,lp,ln(xrn) +Wlp,lp(xrp)−Wlp,cn(xcn) +Wlp,cp(xcp) + blp
−Wln,ln(xln)−Wln,lp(xlp)−Wln,rn(xrn)−Wln,rp(xrp)−Wln,cn(xcn)−Wln,cp(xcp)− bln
Wlp,ln(xln) +Wlp,lp(xlp) +Wlp,rn(xrn) +Wlp,rp(xrp) +Wlp,cn(xcn) +Wlp,cp(xcp) + blp
−Wcn,ln(xln)−Wcn,lp(xlp)−Wcn,ln(xrn) +Wcn,lp(xrp)−Wcn,cn(xcn)− 0 · (xcp)− 0

0 · (xln) +Wcp,lp(xlp) + 0 · (xrn) +Wcp,lp(xrp) + 0 · (xcn) +Wcp,cp(xcp) + bcp



WT (x)+b =


Wln,ln(−xrn) +Wln,lp(xrp) +Wln,rn(−xln) +Wln,rp(xlp) +Wln,cn(−xcn) +Wln,cp(xcp) + bln
Wlp,ln(−xrn) +Wlp,lp(xrp) +Wlp,rn(−xln) +Wlp,rp(xlp) +Wlp,cn(−xcn) +Wlp,cp(xcp) + blp
Wln,rn(−xrn)−Wln,rp(xrp) +Wln,ln(−xln)−Wln,lp(xlp) +Wln,cn(−xcn)−Wln,cp(xcp)− bln
−Wlp,rn(−xrn) +Wlp,rp(xrp)−W,lp,ln(−xln) +Wlp,lp(xlp)−Wlp,cn(−xcn) +Wlp,cp(xcp) + blp

Wcn,ln(−xrn) +Wcn,lp(xrp) +Wcn,ln(−xln)−Wcn,lp(xlp) +Wcn,cn(−xcn) + 0 · (xcp) + 0
0 · (−xrn) +Wcp,lp(xrp) + 0 · (−xln) +Wcp,lp(xlp) + 0 · (−xcn) +Wcp,cp(xcp) + bcp


observe that WT (x) + b = T (Wx+ b), which proves the claim. �

B.2 Equivariant 1D convolution layers

1D convolution layers [45, 22]. Pose symmetric 1D convolution layers can be based on fully
connected layers. A 1D convolution is a fully connected layer with shared parameters across the time
dimension, i.e., at each time step the computation is the sum of fully connected layers over a window:

yt =
∑
τ

Wτxt−τ + b =
∑
τ

fFC(xt−τ ;Wτ , b).

Consequently, we enforce equivariance at each time step by employing the symmetry pattern of fully
connected layers at each time slice.

Wτ =



[
Wln,ln,τ Wln,lp,τ

Wlp,ln,τ Wlp,lp,τ

] [
Wln,rn,τ Wln,rp,τ

Wlp,rn,τ Wlp,rp,τ

] [
Wln,cn,τ Wln,cp,τ

Wlp,cn,τ Wlp,cp,τ

]
[
Wln,rn,τ −Wln,rp,τ

−Wlp,rn,τ Wlp,rp,τ

] [
Wln,ln,τ −Wln,lp,τ

−Wlp,ln,τ Wlp,lp,τ

] [
Wln,cn,τ −Wln,cp,τ

−Wlp,cn,τ Wlp,cp,τ

]
[
Wcn,ln,τ Wcn,lp,τ

0 Wcp,lp,τ

] [
Wcn,ln,τ −Wcn,lp,τ

0 Wcp,lp,τ

] [
Wcn,cn,τ 0

0 Wcp,cp,τ

]

 ,

9



for all τ . The bias of a 1D convolution is identical to that of a fully connected layer, i.e., the same
bias is added for each time step. Hence the same parameter sharing is used.

B.3 Equivariant LSTM and GRU layers

LSTM and GRU modules which satisfy chirality can be obtained from fully connected layers.
However, naïvely setting all matrix multiplications within an LSTM to satisfy the equivariance
property will not lead to an equivariant LSTM because gates are elementwise multiplied with the cell
state. If both gate and cell preserve the negation then the product will not. Therefore, we change the
weight sharing scheme for the gates. We set Dout

n for the gates to be the empty set, i.e., the gates will
be invariant to negation at the input, T in

neg, but still equivariant to the switch operation, T in
swi. With this

setup, the product of the gates and the cell’s output will preserve the sign, as the gates are invariant to
negation and passed through a Sigmoid to be within the range of (0, 1). GRU modules are modified
in the same manner.

More formally, the computations in an LSTM module are as follows:

it = σ(W iixt + bii +W hih(t−1) + bhi) (Input Gate)
ot = σ(W ioxt + bio +W hoh(t−1) + bho) (Output Gate)
ft = σ(W ifxt + bif +W hfh(t−1) + bhf) (Forget Gate)
gt = tanh(W igxt + big +W hgh(t−1) + bhg) (Cell State)
ct = ft · c(t−1) + it · gt
ht = ot · tanh(ct) (Recurrent State)

,

where σ denotes an element-wise sigmoid non-linearity.

Observe that the LSTM operations consist of fully connected layers. For the cell state’s parameters,
e.g., W ig,W hg, big, bhg, we follow the weight sharing scheme discussed for fully connected layers.

Due the to multiplication in the cell state, we redesigned the parameter sharing for the input, output
and forget gate, to be invariant to T in

neg, by setting Dout
n to be the empty set: no negation is needed

for all dimension. This results in the following parameter sharing scheme for the parameters
W ii, bii,W hi, bhi,W io, bio,W ho, bho,W if, bif,W hf, bhf:

W =

 [Wlp,ln Wlp,lp] [Wlp,rn Wlp,rp] [Wlp,cn Wlp,cp]
[−Wlp,rn Wlp,rp] [−Wlp,ln Wlp,lp] [−Wlp,cn Wlp,cp]

[0 Wcp,lp] [0 Wcp,lp] [0 Wcp,cp]

, b =

[blp][blp]
[bcp]

.

This LSTM is chirality equivariant, as the computation of the cell state is equivariant. Other
computations are linear combinations of chirality equivariant operations, which remains equivariant.
We note that the chirality equivariant GRU module is modified by following the same sharing scheme
for the gates.

B.4 Equivariant batch-norm layers

A batch normalization layer performs an element-wise standardization, followed by an element-wise
affine layer (with learnable parameters γ and β):

y = fBN(x) := γ · x− µ√
σ2 + ε

+ β.

Equivariance for γ, and β is obtained by following the principle applied to fully connected layers,
we achieve equivariance via parameter sharing and odd symmetry:

γ =
[
[γln γlp] [γln γ1p] [γcn γcp]

]T
and β =

[
[βln βlp] [−βln βlp] [0 βcp]

]T
.

Equivariance for µ, and σ is obtained by computing the mean and standard deviation on the “aug-
mented batch” and by keeping track of its running average. Formally, given a batch B of data,

µ = 1
2|B|

∑
x∈B x+ T in(x), σ =

√∑
x∈B(x−µ)2+(T in(x)−µ)2

2|B| .
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Figure A1: Illustration of pose regression tasks: (a) 2D to 3D pose estimation; (b) 2D pose forecasting; and (c)
skeleton-based action recognition.

Walk Jog Box Avg.
App. S1 S2 S3 S1 S2 S3 S1 S2 S3 -
Pavllo [34] 17.6 12.5 37.6 28.1 19.1 19.2 29.5 44.0 43.1 33.3
Pavllo [34] (‡) 17.5 12.3 37.4 27.7 19.0 19.0 27.7 43.4 42.5 33.0
Ours 18.9 12.3 38.1 28.5 18.1 18.2 27.1 40.9 40.2 32.2

Table A1: Results on HumanEva-I for multi-action (MA) models reported in Protocol 1 (MPJPE), lower the
better. ‡ indicates test time augmentation.

B.5 Dropout.

At test time, dropout scales the input by p, where p is the dropout probability. The equivariance
property is satisfied because of the associativity property of a scalar multiplication. The input and
output dimension and symmetry of a dropout layer are identical. Therefore, T out and T in are
identical. From the definition:
T out(p · x) = T in(p · x) = T in

negT
in
swi(p · x) = p · (T in

negT
in
swix) = p · (T in(x)) ∀x ∈ R|J

in||Din|.

Hence, a dropout layer naturally satisfies the equivariance property. At training-time, we do not
enforce equivariance for the dropped units, i.e., we do not jointly drop symmetric units as we found
this to prevent overfitting. This is likely application dependent.

C Additional Results

C.1 3D pose estimation

In Tab. A1, we report the HumanEva-I for multi-action models evaluated on Protocol 1 (MPJPE).
Our approach benefits the most from the Boxing action while maintaining the performance on other
actions. We also provide qualitative evaluation in Fig. A2 and Fig. A3. We observe that our model
successfully estimates 3D poses from 2D key-points. We have also attached animations in the
supplemental.

C.2 2D pose forecasting

Task. 2D pose forecasting is the pose regression task of predicting the future human pose, represented
in 2D keypoints, given present and past human pose. See Fig. A1 (b) in the supplementary material
for an illustration.

Dataset and metric. We evaluate on the Penn Action dataset [53]. For a fair comparison with prior
work, we report the ‘Percentage of Correct Keypoint’ metric with a 0.05 threshold (PCK@0.05),
which assesses the accuracy of the predicted keypoints. A predicted keypoint is considered correct if
it is within a 0.05 radius of the ground-truth when considering normalized distance.

Results. In Tab. A2, we report the performance of our models and the state-of-the-art. The base-
line model without augmentation outperforms the state-of-the-art [4]. The gain comes from the
use of Stacked-LSTM and teacher forcing during training. With additional train and test time
data-augmentation, our baseline model further improves. In addition our pose symmetric model
outperforms the baseline, in terms of average PCK@0.05. We observe more significant improvements
for the first ten prediction steps.
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Figure A2: Qualitative visualization of 2D to 3D pose estimation for the action “Walking" on HumanEva-I
dataset.

Prediction Steps Avg.
Approach 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -

Residual [28] (CVPR‘17) 82.4 68.3 58.5 50.9 44.7 40.0 36.4 33.4 31.3 29.5 28.3 27.3 26.4 25.7 25.0 24.5 39.5
3D-PFNet [3](CVPR‘17) 79.2 60.0 49.0 43.9 41.5 40.3 39.8 39.7 40.1 40.5 41.1 41.6 42.3 42.9 43.2 43.3 45.5
TP-RNN [4] (WACV‘19) 84.5 72.0 64.8 60.3 57.2 55.0 53.4 52.1 50.9 50.0 49.3 48.7 48.3 47.9 47.6 47.3 55.6
Baseline w/o aug. 87.3 75.7 68.5 64.0 61.0 59.1 57.6 56.3 55.4 54.9 54.5 54.5 54.4 54.5 54.6 54.7 60.4
Baseline w/ aug. 86.9 75.2 67.9 63.5 60.4 58.4 57.0 55.8 55.1 54.5 54.1 54.0 53.9 53.9 54.0 54.0 59.9
Baseline w/ aug.(‡) 87.0 75.5 68.4 64.1 61.0 59.1 57.5 56.3 55.5 55.0 54.7 54.7 54.6 54.7 54.7 54.7 60.5
Ours 87.5 77.0 68.7 64.2 61.2 59.2 57.6 56.5 55.7 55.1 54.7 54.6 54.4 54.5 54.5 54.5 60.6

Table A2: Results on Penn action dataset, performance reported in terms of PCK@0.05 (higher the better). (‡)
indicates using test time augmentation.

C.3 Skeleton based action recognition
Approach Top-1 Top-5

Feature Encoding [9] 14.9% 25.8%
Deep LSTM [38] 16.4% 35.3%
Temporal-Conv [19] 20.3% 40.0%
ST-GCN [47] 30.7% 52.8%
Ours-Conv 30.8% 52.6%
Ours-Conv-Chiral 30.9% 53.0%

Table A3: Results of the skeleton
based action recognition baselines on
the Kinetics-400 dataset [18] reported
in Top-1 and Top-5 accuracy.

Task. Skeleton based action recognition aims at predicting
human action based on skeleton sequences. See Fig. A1 (c) in
the supplementary material for an illustration.

Dataset and metric. We use the Kinetics-400 dataset [18] in
our experiments. Following [18], we report the classification
accuracy at top-1 and top-5.
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Figure A3: Qualitative visualization of 2D to 3D pose estimation for the action “Boxing" on HumanEva-I
dataset.

Results. In Tab. A3, we report the action recognition performance of our model and the skeleton-
based approaches. We observe that the baseline model ‘Ours-Conv’ performs on par with ST-
GCN [47] and the chiral invariant model, ‘Ours-Conv-Chiral’ outperforms both ST-GCN and Ours-
Conv on Top-1 and Top-5 accuracy, achieving the state-of-the-art performance on the Kinetics-400
dataset among skeleton based action recognition methods.

C.4 Skeleton based action recognition

In Fig. A4, we show the visualization of the input skeleton sequences computed by OpenPose [2] and
the predicted action class by our chiral invariant skeleton based action recognition model.

D Implementation Details

We illustrate the three tasks we evaluate the proposed method on in Fig. A1. We describe the
implementation details and describe the dataset and metric we use in the following.
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Figure A4: Visualization of the input skeleton sequences and the corresponding predicted action classes of our
method on the Kinetics-400 dataset [18].

D.1 3D pose estimation

Implementation details. Our model follows the temporal convolutional architecture proposed
by Pavllo et al. [34], and replaced all layers with their chiral versions; code for the layers are attached
in the supplemental as well. We also changed ReLU to tanh to achieve chiral equivariance. For
the temporal models, we follow their 4 blocks design which has the receptive field of 243. For the
single frame model, we follow their 3 blocks design. The hidden dimension of all the chiral models
is 1020 (such that it is a multiple of the number of joints, 17). Note that the hidden dimension is
slightly smaller than the 1024 used in [34]. We also use their data processing and batching stragety
as described in Section 5 and Appendix A.5 of [34]. For training the model, we utilized the Adam
optimizer with β1 = 0.9 and β2 = 0.9999. We decay the batch-normalizations’ momentum as
suggested in [34]. Other details follow the publicly available implementation by Pavllo et al. [34].
We enforced chiral equivariance by choosing the |Dout

n | to be 1
3 of the hidden dimension. The |Din

n |
for the input layer is 17 and the |Dout

n | for the output layer is 17, i.e., one for each joint.

Dataset and metric. We evaluate on two standard datasets, Human3.6M [17] and HumanEva-I [40].
Human3.6M is a large scale dataset of human motion with 3.6 million video frames. The dataset
consists of 11 subjects performing 15 different actions. Following prior work [32, 42, 29, 41, 27, 34],
each human pose is represented by a 17-joint skeleton. We use the same train and test subject splits.
HumanEva-I is a smaller dataset consisting of four subjects and six actions. To be consistent with
prior work [33, 23, 34], we use the same train and test splits evaluated over the actions of (walk, jog,
and box). For both of these datasets, we consider the setting where we train one model for all actions.
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We report the two standard metrics used in prior work: Protocol 1 (MPJPE) which is the mean per-
joint position error between the prediction and ground-truth [29, 32, 34] and Protocol 2 (P-MPJPE)
which is the error, after alignment, between the prediction and ground-truth [29, 41, 13, 34].

D.2 2D pose forecasting

Implementation details. The non-chiral equivariant baseline is a seq2seq model consisting of an
encoder and decoder, which are stacked-LSTMs with hidden size of 1040 and 2 stacked layers. We
trained using teacher forcing with the Adam optimizer. The batch-size is 256, and we trained for 30
epochs. Dropout is applied to the LSTMs’ hidden layer with drop probability of 0.5. Following prior
works, we use max norm gradient clipping of 5, a learning rate of 0.005 with a decay of 0.95 every
2 epochs. The data processing and evaluation setting follows [4]. Other details follow the publicly
available implementation by Chiu et al. [4]. We enforced chiral equivariance by choosing the |Dout

n |
to be 1

2 of the hidden dimension, as the output is two dimensional per joint.

Dataset and metric. We evaluate on the Penn Action dataset [53]. The dataset consists of 2236
videos with 15 actions. Each frame is annotated with 2D keypoints of 13 human joints. We use the
same train and test split as in [3, 4]. Following Chiu et al. [4] we consider initial velocity as being
part of the input and a single model is used for all actions. For a fair comparison with prior work,
we report the ‘Percentage of Correct Keypoint’ metric with a 0.05 threshold (PCK@0.05), which
assesses the accuracy of the predicted keypoints. A predicted keypoint is considered correct if it is
within a 0.05 radius of the ground-truth when considering normalized distance.

D.3 Skeleton-based action recognition

Implementation details. The non-chiral version of the model, Ours-Conv, follows Temporal-
Conv [19] while we modified the model to have not only temporal convolution but also spatial
convolution. There are ten spatio-temporal convolution blocks. For each block we first perform
spatial convolution and then temporal convolution. The temporal convolution considers the intra-
frame information while the spatial convolution considers the inter-frame information. For the
recognition task, we need chiral invariance, i.e., a chiral pair should be classified as the same action
class. To this end, we use a chiral invariance layer where we let both Jout

r , Jout
l as well as Dout

n

to be empty sets, which means there are no left and right joints but only center joints and there is
no dimension that will be negated in the output of the layer after applying the chirality transform.
Note that the chiral transformation exchange the left and right joints and negate the dimension in the
index set Dout

n . Given Jout
r , Jout

l and Dout
n are all empty, it’s obvious that the output will be chiral

invariant. For the chiral invariance model, Ours-Conv-Chiral, we replace the all the non-symmetric
layers before the chiral invariance layer with their corresponding chiral equivariance version. All
the layers after the chiral invariance layer remain the same as the Ours-Conv model. Similar to [19],
there are in total 10 convolution blocks in Ours-Conv and we put the chiral invariance layer at the
fourth layer. Also, we gradually reduce the ratio of the dimension to be negated (|Dout

n |/|Dout|) from
1
3 to 1

6 at the first layer, from 1
6 to 1

12 at the second layer and from 1
12 to 0 at the third layer. We use

the SGD optimizer with a momentum of 0.9 as in [47] with a batch size of 256. We train the model
for 90 epochs.

Dataset and metric. We use the Kinetics-400 dataset [18] in our experiments. The dataset contains
400 action classes and 306,245 clips in total. Following the experimental setup of Yan et al. [47], we
use OpenPose [2] to locate the 18 human body joints. Each joint is represented as (x, y, c), where x
and y are the 2D coordinates of the joint and c is the confidence score of the joint given by OpenPose.
Following [18], we report the classification accuracy at top-1 and top-5.

Training and test details. During training it is important to apply the chirality transform for data-
augmentation, i.e., with 50% probability we apply T in and T out to input and label. This ensures that
the mini-batch statistics match our assumption on the chirality, i.e., poses that form a chiral pair are
both valid, which is important for the batch-normalization layer. Moreover, during training we use a
standard dropout layer. While we could impose dropped units to be chiral equivariant, we found this
lead to over-fitting in practice. This is expected as imposing chirality on the added noise reduces the
randomness. Importantly, during test no data-augmentation is performed and a single forward pass is
sufficient to obtain an ‘averaged’ result.
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