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Learning to generalize to any novel compositional object ma- o 3
nipulation task from raw visual input, such as stacking blocks o
into various towers, is challenging because the number of tasks a prdiced

Object

grows combinatorially with the number and arrangement of Oynanics ‘
discrete entities. To reduce this combinatorial complexity, this | ’ I
paper departs from the traditional paradigm of training mod- || e, OP3 n
els that globally process a single scene representation vector
(and variants thereof; see Fig. 2b,c,d) and instead proposes ' k '

to train models that locally and symmetrically process sev- . .

eral entiry-representations (Fig. Zh). We use the term object m
abstraction to refer to the abstraction barrier that isolates the

entity-generic specification of the model from the identities of

the entity-specific instances. Imposing object abstraction on a Figure 1: OP3 infers a set of hidden
model allows permutation-invariant processing of the hidden states h{, from an observation z" and
entity-states and naturally scales to different numbers of en- Predicts their future states given a se-
tities without increasing the model’s parameter count, thereby ~duence of actions a™ . “Rolled-out
reducing modeling the combinatorial complexity of scenes to P lans are evaluated by scoring final pre-

the simpler complexity of entities and their relations. Stlgttzg Z‘;‘tes against inferred goal hidden
g

Prior works have proposed to model the dynamics of complex scenes with high-dimensional visual
observations [4} |8, 20, 29]], but particularly relevant to our model are methods with objects as
primitives [[1}12]. Works that enforce object coherence typically require additional supervision [10}[13]]
or access to additional preprocessing, such as segmentations [[14], crops [9], or a simulator [15}30],
while those that do not assume such additional information often factorize the entire scene into
pixel-level entities [26} 32], which do not model objects as coherent wholes.

We present a framework for object-centric perception, prediction, and planning (OP3) that recovers
representations of scenes that factorize effectively over coherent objects, and utilizes these entity-
representations for planning, without requiring additional supervision besides the raw image pixels
(Fig.[T) To bind the properties of the concrete physical entities to the factorized entity-representations,
we model the problem as a state-factorized partially observable MDP and propose an amortized
interactive inference algorithm for inferring the values of the hidden entity-representations.
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Figure 2: Our approach to model-based reinforcement learning imposes object abstraction: (a) The hidden
state is factorized into local entity states, symmetrically processed by the same function which handles generic
entities. In contrast, prior work do not symmetrically process the hidden state. (b) The hidden state represents
the scene globally, processed with a single function [[12} 22} |23} 33]. (c¢) Different chunks of the hidden state
represent different entities and the entire state processed with a single function [3} 18} 28]]. (d) The hidden state
is factorized into local entity states, processed by different functions [[17,[19}131].
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1 Object-Centric Perception, Prediction, and Planning (OP3)

This section describes the general structure of the
observation and dynamics models that implement ob-
ject abstraction, the inference algorithm that binds
values to the factorized hidden state, and the plan-
ning algorithm that plans with hidden entity-states as
an intermediate representation. Under the language
of factorized POMDPs, a set of latent entities A, ;-
generates an image observation z via an observa-
tion function G (x | h}.x). The dynamics function
DA™ | AL, at) describes how an action a inter-
venes on the states of these entities to produce their
states at the next timestep. Each task is specified by a

p(Xlhyx)

reward function R (h}, x, hf;;) which measures the 5

distance between the current entities hJ.,- and the Figure 3: (a) The observation model ¢’ models
: an observation image as a composition of sub-

goal scene entities hf; The goal scene specifies the  jmages weighted by segmentation masks. The
task and depicts a particular arrangement of objects shades of gray in the masks indicate the depth
such as a block tower. We seek to train a model-based from the camera of the object that the sub-image
RL agent that can executing a sequence of actions to  depicts. (b) The graphical model of the generative
manipulate a physical scene with a variable number model of observations k ranging from 1 to K, i
of entities to match the objects in the goal scene. from 1 to N, and J from 1 to M.

1.1 OP3: A Model with Object Abstraction

We do not know the true state hj, of each entity k of the physical environment so will attempt to
estimate the value hj; whose uncertainty is represented by the random variable Hy,. The observation
model G (X | Hy.x) and dynamics model @ (H{}! | HY -, A') operate symmetrically on Hi.f,
which are assigned through a binding mechanism (Sec. [I.2).

Observation Model: The observation model ¢ models how the objects H;.x cause the image
observation X € RM*M_ Each object Hj, is rendered independently using the same func-
tion g(Hy), and the resulting K sub-images are combined to form the final image observation
X. The image is modeled as p (X |Hy.x) = Z,[f:l m (Hy) - ¢ (Hy) where mixture compo-
nents ((Hg) = p(X|Z, = 1, Hi) model the sub-images §(H}), and mixture weights m(Hj) =
p (Zr, = 1|H},) model the segmentation masks. See Appx.[3.5|for details.

Dynamics Model: The dynamics model ® models how each object H} is affected by action A’
and the other objects H; . It applies the same function J(HY, HY,, A') to each state, composed of
several functions illustrated and described in Appx.[3.1] A key feature is that an action is modeled

as an intervention on each object individually rather than on the entire scene, which produces a
finer-grained intervention mechanism than methods with global scene representations.

1.2 Interactive Inference for Binding Object Properties to Latent Variables

As OP3 is a latent variable model, we can bind properties of physical entities to the hidden states by
inferring the parameters of the distributions of each Hj. We build on the IODINE framework [[11]],
which iteratively refines [21]] the posterior p (H1.x|X) via a recognition model Q (H;.x | , E];K)
from a previous estimate h1.x. In real-world scenes, a single static image may be insufficient for
disambiguating objects, which may require observing dynamic object interactions produced from
an action sequence. We thus propose an interactive inference algorithm (Figs. f[9) that incorporates
temporal continuity and interactive feedback to approximate the posterior p (H T Xt A”‘l).

We decompose the inference problem as a variational inference problem at each timestep
to approximate p(H? , |2t a'~', h' 1), with an action-conditioned approximating distribution
q(H! ¢ |2t a*= 1, bt L) computed as follows: we first use our dynamics model to produce A}, ;- as
D(H! |ht1_1%, a'~1), and then use the recognition model from IODINE to compute the approximat-
ing distribution as Q (H? ;. | z*, h!. ;). We apply multiple steps of amortized iterative inference every

timestep to estimate h. .. We provide a derivation for the variational bound for the interactive infer-
ence algorithm in Appx. We can train the entire OP3 system end-to-end by backpropagating
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Figure 4: Amortized interactive inference alternates between perception (pink) and dynamics (orange) steps,
iteratively updating the belief on the values of H1.x over time. Observed nodes are shaded in black. The pink

functions that transform H 1) to HY ;. are equivalent to a single step of IODINE’s iterative inference.
through the entire inference procedure, using the ELBO at every timestep as a training signal for the
parameters of ¢, @, Q in a similar manner as [27].

1.3 Planning

With grounded object-level representations, we can now perform prediction and planning with
visual model-predictive control [7], summarized in Appx. Figure[I0} The algorithm samples many
sequences of actions, scores the predicted states from applying each action sequence with a cost
function (Appx.[34), and chooses the first action of the best action sequence to take in the environment.
This procedure repeats for a fixed number of steps or until the goal is achieved.

2 Experiments

Our experiments aim to study how well our model can (1) learn object representations from images
without any supervision, (2) generalize to novel combinations of objects and tasks, (3) perform
multi-step planning for object manipulation tasks, and (4) infer objects and predict action outcome
for perceptually complex scenes.

2.1 Combinatorial Generalization without Object Supervision

Goal Image SAVP 02pP2 OP3 (ours)

SAVP 0O2P2 OP3 (ours)
24%  T6% 82%

Table 1: Accuracy (%) of block tower builds by the
SAVP baseline, the O2P2 oracle, and our approach.
O2P2 uses image segmentations whereas OP3 uses
only raw images as input.

Unfactorized MLP Dynamics OP3 (base)
7.3% 2.7% 70%

Figure 5: Respective results of our method in compar-
ison to prior work. OP3 is able to plan at nearly the Table 2: Ablation showing the benefits of factorization.

same level as O2P2 even though it does not have access  OP3 uses K=7 slots and a pair-wise dynamics model.
to any object segmentations.

We first study how well OP3 can learn object-based representations without additional object supervi-
sion, as well as how well OP3’s factorized representation can enable combinatorial generalization.
We use the MuJoCo block stacking task introduced by Janner et al. [[14] for the O2P2 model. This
prior work demonstrates that an object-centric model that receives ground truth object segmentations
can build varied structures out of blocks. We use the same training dataset of 60,000 trajectories
of randomly dropped blocks, each showing the before and after image of a block being dropped.
While the training set contains up to 5 objects, the test set contains up to 9 objects, placed in specific
structures (bridge, pyramid, etc.) not seen during training. The actions are optimized using the
cross-entropy method (CEM) [25]].

Our two baselines, SAVP and O2P2, represent the state of the art in video predic-
tion and object factorized planning methods, respectively. Our method obtains simi-
lar qualitative and quantitative performance to O2P2 without using object segmentations.



Furthermore our model learns to map the hidden states #Blocks | SAVP _ OP3 (ours)

to objects in the scene without supervision, and can gen- 1 54% 73 %
eralize to new permutations (e.g., configuration, height, 2 28% 55%
colors, more objects) than seen in the training distribution. 3 28% 41%

The appendix contains visualizations of OP3 factorizing
the scene into individual object components (Fig. [TT}[T2). Table 3: Accuracy (%) of multi-step plan-
We additionally show how an unfactorized ablation of our ning for building block towers by the SAVP
model as a whole, and even an unfactorized ablation of just baseline and our approach.

the dynamics model, lead to a severe degregation in performance in Table 2]

2.2 Multi-Step Planning

The goal of our second experiment is to understand how well OP3 can perform multi-step planning
on objects already present in the scene. We modify the block stacking to require our model to reason
over temporally extended action sequences, by changing the action space to represent a picking and
dropping location. A pick only succeeds if it is within some distance of the center of a block. Goals
are specified with a goal image, with the initial scene containing all the blocks needed to build the
desired structure. This task is more difficult because the agent may have to move blocks out of the
way before placing others which would require multi-step planning. We again optimize the actions
using CEM, optimizing over multiple consecutive actions into the future, executing the first action in
the sequence with lowest cost, and replanning at each time step.

We train on a dataset consisting of random picking and =~ Gealimage  Initialimage savP OF3 (ours)
placing actions, in scenes with two blocks. The test dataset
contains specific structures consisting of up to three blocks.
We plan two steps into the future for the two block and
three block goal environments. We evaluate the accuracy
of our method in comparison to a non-object based ap-
proach, SAVP. Table E| shows that while SAVP does well
on two blocks, our method outperforms the non-object
based approach on three blocks. This suggests an object-
based approach can generalize better to more objects than
seen during training.

2.3 Real World Evaluation Figure 6: Comparison of our method against
In this section, we study how well our method scales to SAVP with end result shown.

real world data with perceptually complex objects. We evaluate OP3 on the Cloth dataset from Ebert
et al. [5)] which contains videos of a robotic arm moving cloths and other objects around. This dataset
contain occlusions and include deformable and multipart objects with varying textures.

We evaluate qualitative performance by p—
visualizing the object segmentations and S g
compare against vanilla IODINE, which
does not incorporate a dynamics model
into the inference process. While the pre-
dictions are blurry we see that OP3 can
obtain reasonable segmentations and in
some cases performs better than IODINE
as shown in Figure 7}

Prediction

Object Masks

. . Figure 7: Qualitative results on learning object representa-
3 Discussion tions on real world data. We show the learned object masks
for IODINE and our method. While Iodine represents two
different objects with the same mask (a and b), OP3 is able to
separate them into different masks (d and e).

‘We have introduced a framework for model-
based reinforcement learning that predicts
and plans with inferred object representa-
tions from raw visual input. Our key idea is using object abstraction, with which we model a
factorized POMDP by symmetrically processing a set of hidden states. By defining models locally on
entities rather than globally on scenes we achieve almost three times the accuracy of a SOTA video
prediction model, and perform comparably to an oracle model that uses object segmentations. We
have presented an interactive inference algorithm with which we have shown multi-step planning
with object representations grounded in the physical scene, on a set of block stacking tasks. We hope
this work motivates future research in grounding object representations from visual input.
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Supplementary Material
3.1 Dynamics Model

/
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Figure 8: The dynamics model ® models the time evolution of every object by symmetrically applying the
function d to each object. For a given object, 4 models the individual dynamics of that object (f,), embeds the
action vector ( f,), computes the action’s effect on that object ( f.o), computes each of the other objects’ effect
on that object (foo0), and aggregates these effects together ( feomb)-

The dynamics model computes pairwise interactions between the hidden states and the effect of an
action on each hidden state. The dynamics model is comprised of the functions:

Hy = fo(HY) A= fu(AY)  HY = fao(HpA)

K
H;ﬁnteract _ Z foo(ﬁim:t, Hkact) H]?rl _ fcomb(glimy }Li’cmeract)7
ik
where for a given object k, fa(,(flkfl) = fact eff(H;€7 ) Sact- att(H ks A) computes how (factetr)
act ~ act

and to what degree (fact-arr) @n action affects the object and fOO(H JHy ) o= fobg- eff(ﬁ act [T ) -

Jfobj- ;m(H JH ) computes how ( fopj-efr) and to what degree ( fobj- m) other objects affect that object.
Sobj-efr and f(,bJ ae are shared across all object pairs. The other functions are shared across all objects.

3.2 Inference

The joint distribution of the hidden object states H% and observations X7 given actions A7 ~!
is given as

T
LT prliT | A1:T—1 1 17l t t—1 qt—1
p (XU Hik | A )=p(Hig)p (X |H1:K)HP(H1:K|H1KaA ) (1)
t=2
Consider the problem of inferring the posterior distribution p (H{:%|2"T, a**T~1) of the hidden
object states Hi% given observations z''7 and actions a7, In general this posterior is intractable
to compute because it involves marginalizing over all values of H{ % so we approximate the posterior

as the solution to a variational inference problem. In Section [3.2.1| we set up the variational inference
objective and in Figure[9] we present the interactive inference algorithm for optimizing the objective.

3.2.1 Amortized Interactive Variational Inference

We approximate the posterior as the solution to a variational inference problem that minimizes the
Kullback-Leibler (KL) divergence

KL(a (HERIT.aT0) | p (R0 ) @

between a variational distribution ¢ (H{7%|#*", a¥**~!) and the true posterior. As we do not have
access to the true posterior, we can equivalently optimize the KL by maximizing the evidence lower
bound

Ehiiqu(Hll;I’lg‘xlvaal:Tfl) [logp (CEI:T | h%'][;)] _ KL(q (HIIIT; | leT,al:T_l) H P (H11[7; ‘ al:T))
3)



Algorithm 1 Amortized Variational Interactive Inference

1: Input: observations 27T actions a7 7L, hyperparameters T, N
2: Input: trainable parameters b, ¢, ¢dn, do
3: fort =1to 7 do
4 fori=1 to N do _ > N steps of iterative inference
5 p(XIAT) = G(hik)
6 L'+ KL (q(Hf.Kkva W) | p(RY) )~ Tog p(a' A )
7 Vi " 1% feedback(t IA“LtIZK, L)
8 Hl:? A Q(Z’ 7h1:7}(’ vIY:ZI()
9 end 1f({r
t
0. APt <« D(hLY, ah)
1: end for

Figure 9: Given object states h%. ;- and actions a’, the dynamics model predicts the next state ﬁi"‘}% from which
the observation model predicts the observation xt"'l Given a new observation 2***, feedback 77, ;- from the
ELBO L updates the belief of the state to h“‘1 The observation, dynamics, and recognition models are
parameterized by ¢, ¢, @g-

with respect to ¢, where we simplified p ( LT | hi1 I:T*I) top ( LT hlZT) because "7 and

at*T=1 are conditionally independent given h}:% Let us factorize the variational distribution as
T
1.T 1.7 1T t 1:t 1:t—1
q (Hif 2", a ):Hq(Hl:K\m ,a ). 4)
t=1

With this factorization, we can use the linearity of expectation to decouple equation [3|as a variational
inference problem at every timestep. At the first timestep we have

Epi it 1at) 08P (2" [ P1x)] = KL(q (Hig [27) |l p (Hix)) )
and in subsequent timesteps ¢ we have

Ehtl:KNq(H{’:K|w1:t,a11t_1) [10gp($t|ht1K)] -
_Ehifkl’vq(Hile ‘11117170‘1#*2) [KL(q (Hf:K |x1:t’ al:t_l) ” p (H{:K | ht_l’ at_l))] : (6)

Note that the objective at timestep 1 is equivalent to amortized variational inference on a static image
and is the objective in IODINE. We outline the algorithm in detail in Figure[9]

3.3 Planning

We use visual model predictive control for planning. The planning algorithm and action scoring
algorithm are outlined in Figure The actions are optimized using the cross-entropy method
(CEM), with each sampled action evaluated by the model using the action-scoring algorithm. CEM
begins from a uniform distribution on the first iteration, uses a population size of 1000 samples per
iteration, and uses 10% of the best samples to fit a Gaussian distribution for each successive iteration.

3.4 Cost Function

Building good cost functions for image-based control is generally difficult without access to the
underlying state [6]]. Our learned representations can alleviate this problem, since they better reflect
the underlying state of objects in the scene. In our evaluation, we study tasks that require arranging
physical objects into goal configurations (Fig. [IT). Our cost function will compute some measure of
distance between the inferred hidden states of the goal image h$’, with the predicted hidden states
hE,.

We use two different cost functions. If we are performing single-step greedy planning, then we
assume a single action will achieve one of the goal states, and can remove the matching goal state



Algorithm 2 OBJECT-CENTRIC-PLANNING

1: Input: 217, %771, 2%; Output: a7 7 Alzorithm 3

2: h$ i < GOAL INFERENCE(z®) gorithm 5 ACTION-SCORING
. T 1:7 l:7—1 .

3: hi.k < STATE ACQUISITION(z ", a ") 1: Input: hl. ., h{ g, a"*7~1; Output: ¢

4: fort < 7toT do 2: fort + ttoT-1do
. T+t G ’ 7 ’

5: at <7 ?CTION SELECTION(R &L, hff) 3 WA D(hY g, a)

6: 27T« ENVIRONMENT-STEP(a}) 4: end for

7: RTEY « D (BT, ab) 5: score ¢ = C(hf x, hf k)

8: h;—thH « Q(hfrxtaf““) 6: return c

9: end for

10: return ™7

Figure 10: GOAL INFERENCE: estimate the goal hidden states h$ z with IODINE. STATE ACQUISTION:
estimate the hidden states h7. g of the current scene with amortized interactive inference over 7 seed steps.

from future comparison. Specifically, we compute the distances over all pairs of goal and predicted
hidden states and find the pair with minimum distance. This is defined as
G 1P . G 1P

G(hlzkvhlck) - aeln/l,?eKD(ha 7hb )7 (7)
where K’ and K are the set of hidden states in the goal and predicted image respectively. The specifics
of what we use for D are explained in the appendix. Once an action is chosen, the hidden state
argmin, ¢ g in H IG(/ is removed from the goal states K, representing how the action has succeeded
in placing a particular object at that goal state and no longer needs to be compared to in the cost.
While this works for greedy planning, it may not work in general for multi-step planning. We
instead sum over the distances of each matching pair and no longer prune the set of goal states using
C(hik: k) = Yaer mimpe e D(hG ).

To compute the cost we use a distance function between hidden states, D(H,, Hy). For the
first environment with single-step planning we use L2 distance of the corresponding subim-
ages. D(H,, Hy) = Lo(I(H,),I(Hp)) where the masked sub-image of an object is the mask
times the pixel means I(Hy) = m;;(Hy) - g(Hy) ;). For the second environment with multi-
step planning we a different distance function since the previous one may care more about if
a shape matches than if the color matches. We instead use a form of intersection over union
but that counts intersection if the mask aligns and pixel color values are close D(H,, Hy) =
1 _ Ty mig(Ha)>0.01 and ms; (Hy)>0.01 and L2(§(Ha) (i5) §(Hb) (15)) <0-1
Zz} my;(Hq)>0.01 0r my; (Hp)>0.01

better since it will not give low cost to moving a wrong color block to the position of a different color
goal block.

. We found this version to work

3.5 Model and Hyperparameter Details

We use similar model architectures as in [11]] and so have rewritten some details from their appendix
here. Differences include the dynamics model, inclusion of actions, and training procedure over se-
quences of data. The posterior distribution p(h|x) is a diagonal Gaussian. The the output distribution
p(x|h) is also a diagonal Gaussian with means £ and global scale o = 0.1. The decoder outputs the
means p and mask my.

Training All models are trained with the ADAM optimizer [16] with default parameters and a
learning rate of 0.0001. We use gradient clipping as in [24] where if the norm of global gradient
exceeds 5.0 then the gradient is scaled down to that norm.



Inputs For all models, we use the following inputs to the refinement network, where LN means
Layernorm and SG means stop gradients. The following image-sized inputs are concatenated and fed
to the corresponding convolutional network:

Description Formula LN SG Ch.
image T 3
means 7 3
mask my 1
mask-logits my 1
mask posterior p(myl|x,) 1
gradient of means V,.L v oV 3
gradient of mask Vi oL v ooV 1
pixelwise likelihood  p(x|h) v oV 1
leave-one-out likelih.  p(x|hizr) vV 1
coordinate channels 2

—_
J

total:

The posterior parameters h and their gradients are flat vectors, and we concatenate them with the
output of the convolutional part of the refinement network and use the result as input to the refinement
LSTM:

Description Formula LN SG

gradient of posterior Vp, oL v oV
posterior hy

3.5.1 Architecture

All models use the ELU activation function and the Convolutional layers use a stride equal to 1 unless
otherwise noted.

Observation Model Decoder

Type Size/Ch.  Act. Func. Comment
Input: H; 128

Broadcast 130 + coordinates
Conv 3 x 3 64 ELU

Conv 3 x 3 64 ELU

Conv 3 x 3 64 ELU

Conv 3 x 3 64 ELU

Conv 3 x 3 4 Linear RGB + Mask

Refinement Network

Type Size/Ch. Act. Func. Comment
MLP 128 Linear
LSTM 256 Tanh
Concat [H;, V] 512

MLP 256 ELU
Avg. Pool 64

Conv 3 x 3 64 ELU
Conv 3 x 3 64 ELU
Conv 3 x 3 64 ELU
Conv 3 x 3 64 ELU
Inputs 17
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Dynamics Network The posterior distribution is represented as a diagonal Gaussian and so we
choose the dynamics network to only operate on the mean parameters of this distribution. We carry
over the variance parameters from the previous step to the next step. All models including the final
layer uses ELU activations unless otherwise stated. MLP(128) would denote a multilayer peceptron
with a hidden layer of size 128.

e f,: This inputs Hf of size 128, is a MLP(128), and outputs I{Q of size 128.

o fovj-ett: This inputs the concatenated pair of ]EIi, H ; each of size 128, is a MLP(256), and
outputs features of size 128.

® fobj-aw: This inputs the concatenated f{i, H ; each of size 128, is a MLP(256), and applies a
sigmoid activation to output a single attention scalar of size 1.

® feomb: This inputs the concatenated fIi, ﬁfff each of size 128, is a MLP(256), and applies
an identity activation to output H .

3.5.2 Single-Step Block-Stacking

The training dataset has 60,000 trajectories each containing before and after images of size 64x64
from [14]. Factorized OP3 models were trained on scenes with 1 to 5 blocks with K = 7 slots.
The unfactorized OP3 ablation is naturally trained with K = 1 slots, while the unfactorized dynam-
ics ablation replaces the regular dynamics network with an MLP whose input and output are the
concatenated latents. We evaluate OP3 on the same set of 110 goal images as Janner et al. [14].

3.5.3 Multi-Step Block-Stacking

The training dataset has 10,000 trajectories each from a separate environment with two different
colored blocks. Each trajectory contains five frames (64x64) of randomly picking and placing blocks.
We bias the dataset such that 30% of actions will pick up a block and place it somewhere randomly,
40% of actions will pick up a block and place it on top of a another random block, and 30% of actions
contain random pick and place locations. Models were trained with K = 5 slots.

4 Additional Experimental Evaluation

Figure [IT]shows a visualization of the planning procedure that OP3 executes on single-step block
stacking, included the predicted images that OP3 generates. Given an action image, which depicts
an intervention on the scene (a block raised in the air), OP3 predicts the steady state result from
dropping the block. The figure also shows that OP3 makes predictions that reasonably model the true
dynamics of the environment.

MPC Actions

Action
Images

Predicted
Steady
State

True
Steady
State

Figure 11: Qualitative results on building a structure. We see how our method is able to accurately and
consistently predict the outcome of the action image, successively capturing the effect of inertial dynamics
(gravity) and interactions with other objects.
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Figure[T2]shows a demonstration of the execution of the inference procedure on single-step block
stacking. OP3 learns to split the objects in the scene into several hidden entity-representations, which
are decoded into the object sub-images shown. When OP3 predicts how the yellow block falls in the
figure, notice that only the sub-image depicting the yellow block changes while the other sub-images
remain unperturbed, showcasing that modeling object separately may provide a benefit for isolating
the relevant variables to a prediction from the irrelevant ones.

Inference Pred

Input
Image

Reconstruction

Figure 12: We show a demonstration of a rollout. The first four columns show inference iterations on the single
input image, while the last column shows the predicted results using the dynamics module on the learnt hidden
states (top right image is not given as input and shows the true outcome). The bottom 5 rows show I(H;) at
each iteration, demonstrating how the model is able to capture individual objects, and the dynamics afterwards.

Figure [[3] shows several plans executed by OP3, starting from an initial scene of three blocks. Note
that OP3 was trained only on modeling 1 or 2 blocks, so modeling three blocks requires OP3 to
extrapolate its knowledge of object interactions to a different number of objects from what it has been
trained on.

Goal

t=0 t=1 t=2 t=3 t=4 t=5
Image

Figure 13: Demonstration of our method on several goals. ¢ = 0 denotes the initial scene that must be
reconfigured to match the goal image. ¢ = 1...5 show the executed actions.
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