
Object Abstraction in Visual Model-Based
Reinforcement Learning

Rishi Veerapaneni∗,1, John D. Co-Reyes∗,1, Michael Chang∗,1, Michael Janner1
Chelsea Finn2, Jiajun Wu3, Joshua Tenenbaum3, Sergey Levine1

Figure 1: OP3 infers a set of hidden
states ht1:K from an observation xt and
predicts their future states given a se-
quence of actions at:T−1. Rolled-out
plans are evaluated by scoring final pre-
dicted states against inferred goal hidden
states hgk.

Learning to generalize to any novel compositional object ma-
nipulation task from raw visual input, such as stacking blocks
into various towers, is challenging because the number of tasks
grows combinatorially with the number and arrangement of
discrete entities. To reduce this combinatorial complexity, this
paper departs from the traditional paradigm of training mod-
els that globally process a single scene representation vector
(and variants thereof; see Fig. 2b,c,d) and instead proposes
to train models that locally and symmetrically process sev-
eral entity-representations (Fig. 2a). We use the term object
abstraction to refer to the abstraction barrier that isolates the
entity-generic specification of the model from the identities of
the entity-specific instances. Imposing object abstraction on a
model allows permutation-invariant processing of the hidden
entity-states and naturally scales to different numbers of en-
tities without increasing the model’s parameter count, thereby
reducing modeling the combinatorial complexity of scenes to
the simpler complexity of entities and their relations.

Prior works have proposed to model the dynamics of complex scenes with high-dimensional visual
observations [4, 8, 20, 29], but particularly relevant to our model are methods with objects as
primitives [1, 2]. Works that enforce object coherence typically require additional supervision [10, 13]
or access to additional preprocessing, such as segmentations [14], crops [9], or a simulator [15, 30],
while those that do not assume such additional information often factorize the entire scene into
pixel-level entities [26, 32], which do not model objects as coherent wholes.

We present a framework for object-centric perception, prediction, and planning (OP3) that recovers
representations of scenes that factorize effectively over coherent objects, and utilizes these entity-
representations for planning, without requiring additional supervision besides the raw image pixels
(Fig. 1) To bind the properties of the concrete physical entities to the factorized entity-representations,
we model the problem as a state-factorized partially observable MDP and propose an amortized
interactive inference algorithm for inferring the values of the hidden entity-representations.

Figure 2: Our approach to model-based reinforcement learning imposes object abstraction: (a) The hidden
state is factorized into local entity states, symmetrically processed by the same function which handles generic
entities. In contrast, prior work do not symmetrically process the hidden state. (b) The hidden state represents
the scene globally, processed with a single function [12, 22, 23, 33]. (c) Different chunks of the hidden state
represent different entities and the entire state processed with a single function [3, 18, 28]. (d) The hidden state
is factorized into local entity states, processed by different functions [17, 19, 31].

* Equal contribution.1University of California Berkeley. 2Stanford University. 3MIT.
Workshop on Perception as Generative Reasoning, NeurIPS 2019, Vancouver, Canada.

1 Object-Centric Perception, Prediction, and Planning (OP3)

Figure 3: (a) The observation model Ĝ models
an observation image as a composition of sub-
images weighted by segmentation masks. The
shades of gray in the masks indicate the depth
from the camera of the object that the sub-image
depicts. (b) The graphical model of the generative
model of observations k ranging from 1 to K, i
from 1 to N , and J from 1 to M .

This section describes the general structure of the
observation and dynamics models that implement ob-
ject abstraction, the inference algorithm that binds
values to the factorized hidden state, and the plan-
ning algorithm that plans with hidden entity-states as
an intermediate representation. Under the language
of factorized POMDPs, a set of latent entities h∗1:K
generates an image observation x via an observa-
tion function G(x |h∗1:K). The dynamics function
D(ht+1,∗

1:K |ht,∗1:K , at) describes how an action a inter-
venes on the states of these entities to produce their
states at the next timestep. Each task is specified by a
reward function R(h∗1:K , h

G,∗
1:K) which measures the

distance between the current entities h∗1:K and the
goal scene entities hG,∗

1:K . The goal scene specifies the
task and depicts a particular arrangement of objects
such as a block tower. We seek to train a model-based
RL agent that can executing a sequence of actions to
manipulate a physical scene with a variable number
of entities to match the objects in the goal scene.

1.1 OP3: A Model with Object Abstraction

We do not know the true state h∗k of each entity k of the physical environment so will attempt to
estimate the value hk whose uncertainty is represented by the random variable Hk. The observation
model Ĝ (X |H1:K) and dynamics model D̂

(
Ht+1

1:K |Ht
1:K , A

t
)

operate symmetrically on H1:K ,
which are assigned through a binding mechanism (Sec. 1.2).

Observation Model: The observation model Ĝ models how the objects H1:K cause the image
observation X ∈ R

N×M . Each object Hk is rendered independently using the same func-
tion ĝ(Hk), and the resulting K sub-images are combined to form the final image observation
X . The image is modeled as p (X|H1:K) =

∑K
k=1m (Hk) · ζ (Hk) where mixture compo-

nents ζ(Hk) = p (X|Zk = 1, Hk) model the sub-images ĝ(Hk), and mixture weights m(Hk) =
p (Zk = 1|Hk) model the segmentation masks. See Appx. 3.5 for details.

Dynamics Model: The dynamics model D̂ models how each object Ht
k is affected by action At

and the other objects Ht
6=k. It applies the same function d̂(Ht

k, H
t
6=k, A

t) to each state, composed of
several functions illustrated and described in Appx. 3.1. A key feature is that an action is modeled
as an intervention on each object individually rather than on the entire scene, which produces a
finer-grained intervention mechanism than methods with global scene representations.

1.2 Interactive Inference for Binding Object Properties to Latent Variables

As OP3 is a latent variable model, we can bind properties of physical entities to the hidden states by
inferring the parameters of the distributions of each Hk. We build on the IODINE framework [11],
which iteratively refines [21] the posterior p (H1:K |X) via a recognition model Q(H1:K |x, ĥ1:K)

from a previous estimate ĥ1:K . In real-world scenes, a single static image may be insufficient for
disambiguating objects, which may require observing dynamic object interactions produced from
an action sequence. We thus propose an interactive inference algorithm (Figs. 4,9) that incorporates
temporal continuity and interactive feedback to approximate the posterior p

(
Ht

1:K |X1:t, A1:t−1).
We decompose the inference problem as a variational inference problem at each timestep
to approximate p(Ht

1:K |xt, at−1, h
t−1
1:K), with an action-conditioned approximating distribution

q(Ht
1:K |xt, at−1, h

t−1
1:K) computed as follows: we first use our dynamics model to produce ĥt1:K as

D(Ht
1:K |h

t−1
1:K , a

t−1), and then use the recognition model from IODINE to compute the approximat-
ing distribution as Q(Ht

1:K |xt, ĥt1:K). We apply multiple steps of amortized iterative inference every
timestep to estimate ht1:K . We provide a derivation for the variational bound for the interactive infer-
ence algorithm in Appx. 3.2.1. We can train the entire OP3 system end-to-end by backpropagating

2

Figure 4: Amortized interactive inference alternates between perception (pink) and dynamics (orange) steps,
iteratively updating the belief on the values of H1:K over time. Observed nodes are shaded in black. The pink
functions that transform Ĥt

1:K to Ht
1:K are equivalent to a single step of IODINE’s iterative inference.

through the entire inference procedure, using the ELBO at every timestep as a training signal for the
parameters of Ĝ, D̂, Q̂ in a similar manner as [27].

1.3 Planning

With grounded object-level representations, we can now perform prediction and planning with
visual model-predictive control [7], summarized in Appx. Figure 10. The algorithm samples many
sequences of actions, scores the predicted states from applying each action sequence with a cost
function (Appx. 3.4), and chooses the first action of the best action sequence to take in the environment.
This procedure repeats for a fixed number of steps or until the goal is achieved.

2 Experiments
Our experiments aim to study how well our model can (1) learn object representations from images
without any supervision, (2) generalize to novel combinations of objects and tasks, (3) perform
multi-step planning for object manipulation tasks, and (4) infer objects and predict action outcome
for perceptually complex scenes.

2.1 Combinatorial Generalization without Object Supervision

Figure 5: Respective results of our method in compar-
ison to prior work. OP3 is able to plan at nearly the
same level as O2P2 even though it does not have access
to any object segmentations.

SAVP O2P2 OP3 (ours)

24% 76% 82%

Table 1: Accuracy (%) of block tower builds by the
SAVP baseline, the O2P2 oracle, and our approach.
O2P2 uses image segmentations whereas OP3 uses
only raw images as input.

Unfactorized MLP Dynamics OP3 (base)

7.3% 2.7% 70%

Table 2: Ablation showing the benefits of factorization.
OP3 uses K=7 slots and a pair-wise dynamics model.

We first study how well OP3 can learn object-based representations without additional object supervi-
sion, as well as how well OP3’s factorized representation can enable combinatorial generalization.
We use the MuJoCo block stacking task introduced by Janner et al. [14] for the O2P2 model. This
prior work demonstrates that an object-centric model that receives ground truth object segmentations
can build varied structures out of blocks. We use the same training dataset of 60,000 trajectories
of randomly dropped blocks, each showing the before and after image of a block being dropped.
While the training set contains up to 5 objects, the test set contains up to 9 objects, placed in specific
structures (bridge, pyramid, etc.) not seen during training. The actions are optimized using the
cross-entropy method (CEM) [25].

Our two baselines, SAVP and O2P2, represent the state of the art in video predic-
tion and object factorized planning methods, respectively. Our method obtains simi-
lar qualitative and quantitative performance to O2P2 without using object segmentations.

3

Blocks SAVP OP3 (ours)

1 54% 73%
2 28% 55%
3 28% 41%

Table 3: Accuracy (%) of multi-step plan-
ning for building block towers by the SAVP
baseline and our approach.

Furthermore our model learns to map the hidden states
to objects in the scene without supervision, and can gen-
eralize to new permutations (e.g., configuration, height,
colors, more objects) than seen in the training distribution.
The appendix contains visualizations of OP3 factorizing
the scene into individual object components (Fig. 11, 12).
We additionally show how an unfactorized ablation of our
model as a whole, and even an unfactorized ablation of just
the dynamics model, lead to a severe degregation in performance in Table 2.

2.2 Multi-Step Planning
The goal of our second experiment is to understand how well OP3 can perform multi-step planning
on objects already present in the scene. We modify the block stacking to require our model to reason
over temporally extended action sequences, by changing the action space to represent a picking and
dropping location. A pick only succeeds if it is within some distance of the center of a block. Goals
are specified with a goal image, with the initial scene containing all the blocks needed to build the
desired structure. This task is more difficult because the agent may have to move blocks out of the
way before placing others which would require multi-step planning. We again optimize the actions
using CEM, optimizing over multiple consecutive actions into the future, executing the first action in
the sequence with lowest cost, and replanning at each time step.

Figure 6: Comparison of our method against
SAVP with end result shown.

We train on a dataset consisting of random picking and
placing actions, in scenes with two blocks. The test dataset
contains specific structures consisting of up to three blocks.
We plan two steps into the future for the two block and
three block goal environments. We evaluate the accuracy
of our method in comparison to a non-object based ap-
proach, SAVP. Table 3 shows that while SAVP does well
on two blocks, our method outperforms the non-object
based approach on three blocks. This suggests an object-
based approach can generalize better to more objects than
seen during training.

2.3 Real World Evaluation
In this section, we study how well our method scales to
real world data with perceptually complex objects. We evaluate OP3 on the Cloth dataset from Ebert
et al. [5] which contains videos of a robotic arm moving cloths and other objects around. This dataset
contain occlusions and include deformable and multipart objects with varying textures.

Figure 7: Qualitative results on learning object representa-
tions on real world data. We show the learned object masks
for IODINE and our method. While Iodine represents two
different objects with the same mask (a and b), OP3 is able to
separate them into different masks (d and e).

We evaluate qualitative performance by
visualizing the object segmentations and
compare against vanilla IODINE, which
does not incorporate a dynamics model
into the inference process. While the pre-
dictions are blurry we see that OP3 can
obtain reasonable segmentations and in
some cases performs better than IODINE
as shown in Figure 7.

3 Discussion
We have introduced a framework for model-
based reinforcement learning that predicts
and plans with inferred object representa-
tions from raw visual input. Our key idea is using object abstraction, with which we model a
factorized POMDP by symmetrically processing a set of hidden states. By defining models locally on
entities rather than globally on scenes we achieve almost three times the accuracy of a SOTA video
prediction model, and perform comparably to an oracle model that uses object segmentations. We
have presented an interactive inference algorithm with which we have shown multi-step planning
with object representations grounded in the physical scene, on a set of block stacking tasks. We hope
this work motivates future research in grounding object representations from visual input.

4

References
[1] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for

learning about objects, relations and physics. In Advances in Neural Information Processing Systems,
pages 4502–4510, 2016.

[2] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-
based approach to learning physical dynamics. arXiv:1612.00341, 2016.

[3] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In Advances
in Neural Information Processing Systems, pages 2172–2180, 2016.

[4] Emily L Denton et al. Unsupervised learning of disentangled representations from video. In Advances in
neural information processing systems, pages 4414–4423, 2017.

[5] Frederik Ebert, Sudeep Dasari, Alex X Lee, Sergey Levine, and Chelsea Finn. Robustness via retrying:
Closed-loop robotic manipulation with self-supervised learning. arXiv:1810.03043, 2018.

[6] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual foresight:
Model-based deep reinforcement learning for vision-based robotic control. arXiv:1812.00568, 2018.

[7] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages 2786–2793. IEEE, 2017.

[8] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in neural information processing systems, pages 64–72, 2016.

[9] Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive
models of physics for playing billiards. arXiv:1511.07404, 2015.

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[11] Klaus Greff, Raphael Lopez Kaufmann, Rishabh Kabra, Nicholas Watters, Chris Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with
iterative variational inference. arXiv:1903.00450, 2019.

[12] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv:1811.04551, 2018.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 2961–2969, 2017.

[14] Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum, Chelsea Finn, and Jiajun Wu.
Reasoning about physical interactions with object-oriented prediction and planning. arXiv:1812.10972,
2018.

[15] Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua Lou, Nimrod
Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks: Zero-shot transfer with a
generative causal model of intuitive physics. arXiv:1706.04317, 2017.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

[17] Tejas Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew Zis-
serman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception and control.
arXiv:1906.11883, 2019.

[18] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional inverse
graphics network. In Advances in Neural Information Processing Systems, pages 2539–2547, 2015.

[19] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine. Stochastic
adversarial video prediction. arXiv:1804.01523, 2018.

[20] Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block towers by example.
arXiv:1603.01312, 2016.

[21] Joseph Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference. arXiv:1807.09356, 2018.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 02
2015.

[23] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of memory, active
perception, and action in minecraft. arXiv:1605.09128, 2016.

5

[24] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient problem.
ArXiv, abs/1211.5063, 2012.

[25] Reuven Y. Rubinstein and Dirk P. Kroese. The cross-entropy method. In Information Science and Statistics,
2004.

[26] Adam Santoro, David Raposo, David GT Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Timothy Lillicrap. A simple neural network module for relational reasoning. arXiv:1706.01427, 2017.

[27] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural expectation
maximization: Unsupervised discovery of objects and their interactions. arXiv:1802.10353, 2018.

[28] William F Whitney, Michael Chang, Tejas Kulkarni, and Joshua B Tenenbaum. Understanding visual
concepts with continuation learning. arXiv:1602.06822, 2016.

[29] Nevan Wichers, Ruben Villegas, Dumitru Erhan, and Honglak Lee. Hierarchical long-term video prediction
without supervision. arXiv:1806.04768, 2018.

[30] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics via
visual de-animation. In Advances in Neural Information Processing Systems, pages 153–164, 2017.

[31] Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman, Joshua B Tenenbaum, and Jiajun
Wu. Unsupervised discovery of parts, structure, and dynamics. arXiv:1903.05136, 2019.

[32] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls,
David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Deep reinforcement learning with relational
inductive biases. 2018.

[33] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J Johnson, and Sergey Levine. Solar:
Deep structured latent representations for model-based reinforcement learning. arXiv:1808.09105, 2018.

6

Supplementary Material
3.1 Dynamics Model

Figure 8: The dynamics model D̂ models the time evolution of every object by symmetrically applying the
function d̂ to each object. For a given object, d̂ models the individual dynamics of that object (fo), embeds the
action vector (fa), computes the action’s effect on that object (fao), computes each of the other objects’ effect
on that object (foo), and aggregates these effects together (fcomb).

The dynamics model computes pairwise interactions between the hidden states and the effect of an
action on each hidden state. The dynamics model is comprised of the functions:

H̃k = fo(H
t
k) Ã = fa(A

t) H̃act
k = fao(H̃kÃ)

H interact
k =

K∑
i 6=k

foo(H̃i
act
, H̃k

act
) Ht+1

k = fcomb(H̃
act
k , H

interact
k),

where for a given object k, fao(H̃kÃ) := fact-eff(H̃k, Ã) · fact-att(H̃k, Ã) computes how (fact-eff)

and to what degree (fact-att) an action affects the object and foo(H̃i
act
, H̃k

act
) := fobj-eff(H̃

act
i , H̃act

k) ·
fobj-att(H̃

act
i , H̃act

k) computes how (fobj-eff) and to what degree (fobj-att) other objects affect that object.
fobj-eff and fobj-att are shared across all object pairs. The other functions are shared across all objects.

3.2 Inference

The joint distribution of the hidden object states H1:T
1:K and observations X1:T given actions A1:T−1

is given as

p
(
X1:T , H1:T

1:K |A1:T−1) = p
(
H1

1:K

)
p
(
X1 |H1

1:K

) T∏
t=2

p
(
Ht

1:K |Ht−1
1:K , A

t−1) . (1)

Consider the problem of inferring the posterior distribution p
(
H1:T

1:K |x1:T , a1:T−1
)

of the hidden
object states H1:T

1:K given observations x1:T and actions a1:T−1. In general this posterior is intractable
to compute because it involves marginalizing over all values of H1:T

1:K so we approximate the posterior
as the solution to a variational inference problem. In Section 3.2.1 we set up the variational inference
objective and in Figure 9 we present the interactive inference algorithm for optimizing the objective.

3.2.1 Amortized Interactive Variational Inference

We approximate the posterior as the solution to a variational inference problem that minimizes the
Kullback-Leibler (KL) divergence

KL
(
q
(
H1:T

1:K |x1:T , a1:T−1
)
‖ p
(
H1:T

1:K |x1:T , a1:T−1
))

(2)

between a variational distribution q
(
H1:T

1:K |x1:T , a1:T−1
)

and the true posterior. As we do not have
access to the true posterior, we can equivalently optimize the KL by maximizing the evidence lower
bound

Eh1:T
1:K∼q(H1:T

1:K |x1:T ,a1:T−1)
[
log p

(
x1:T |h1:T1:K

)]
−KL

(
q
(
H1:T

1:K |x1:T , a1:T−1
)
‖ p
(
H1:T

1:K | a1:T
))
(3)

7

Algorithm 1 Amortized Variational Interactive Inference

1: Input: observations x1:T , actions a1:T−1, hyperparameters T,N
2: Input: trainable parameters ĥ1,1, φG, φD , φQ

3: for t = 1 to T do
4: for i = 1 to N do . N steps of iterative inference
5: p(X|ĥt,i1:K)← G(ĥt,i1:K)

6: Lt ← KL
(
q(Ĥt

1:K |xt, ĥt,i1:K) ‖ p(ĥt,i1:K)
)
− log p(xt|ĥt,i1:K)

7: ∇t,i1:K ← feedback(xt, ĥt,i1:K ,L
t)

8: Ht,i+1
1:K ← Q(xt, ĥt,i1:K ,∇

t,i
1:K)

9: end for
10: ĥt+1,1

1:K ← D(ht,N1:K , a
t)

11: end for

Figure 9: Given object states ht1:K and actions at, the dynamics model predicts the next state ĥt+1
1:K from which

the observation model predicts the observation x̂t+1. Given a new observation xt+1, feedback γt1:K from the
ELBO Lt updates the belief of the state to ht+1

1:K . The observation, dynamics, and recognition models are
parameterized by φĜ, φD̂ , φQ̂ .

with respect to q, where we simplified p
(
x1:T |h1:T1:K , a

1:T−1) to p
(
x1:T |h1:T1:K

)
because x1:T and

a1:T−1 are conditionally independent given h1:T1:K . Let us factorize the variational distribution as

q
(
H1:T

1:K |x1:T , a1:T
)
=

T∏
t=1

q
(
Ht

1:K |x1:t, a1:t−1
)
. (4)

With this factorization, we can use the linearity of expectation to decouple equation 3 as a variational
inference problem at every timestep. At the first timestep we have

Eh1
1:K∼q(H1

1:K | x1)
[
log p

(
x1 |h11:K

)]
−KL

(
q
(
H1

1:K |x1
)
‖ p
(
H1

1:K

))
(5)

and in subsequent timesteps t we have

Eht
1:K∼q(Ht

1:K | x1:t,a1:t−1)
[
log p

(
xt|ht1:K

)]
←↩

−Eht−1
1:K∼q(H

t−1
1:K | x1:t−1,a1:t−2)

[
KL

(
q
(
Ht

1:K |x1:t, a1:t−1
)
‖ p
(
Ht

1:K |ht−1, at−1
))]

. (6)

Note that the objective at timestep 1 is equivalent to amortized variational inference on a static image
and is the objective in IODINE. We outline the algorithm in detail in Figure 9.

3.3 Planning

We use visual model predictive control for planning. The planning algorithm and action scoring
algorithm are outlined in Figure 10. The actions are optimized using the cross-entropy method
(CEM), with each sampled action evaluated by the model using the action-scoring algorithm. CEM
begins from a uniform distribution on the first iteration, uses a population size of 1000 samples per
iteration, and uses 10% of the best samples to fit a Gaussian distribution for each successive iteration.

3.4 Cost Function

Building good cost functions for image-based control is generally difficult without access to the
underlying state [6]. Our learned representations can alleviate this problem, since they better reflect
the underlying state of objects in the scene. In our evaluation, we study tasks that require arranging
physical objects into goal configurations (Fig. 11). Our cost function will compute some measure of
distance between the inferred hidden states of the goal image hG1:k with the predicted hidden states
hP1:k.

We use two different cost functions. If we are performing single-step greedy planning, then we
assume a single action will achieve one of the goal states, and can remove the matching goal state

8

Algorithm 2 OBJECT-CENTRIC-PLANNING

1: Input: x1:τ , a1:τ−1, xG; Output: aτ :τ+T
2: hG1:K ← GOAL INFERENCE(xG)
3: hτ1:K ← STATE ACQUISITION(x1:τ , a1:τ−1)
4: for t← τ to T do
5: at ← ACTION SELECTION(hτ+t1:K , hGK)
6: xτ+t+1 ← ENVIRONMENT-STEP(at)
7: ĥτ+t+1

1:K ← D(hτ+t1:K , a
t)

8: hτ+t+1
1:K ← Q(ĥτ+t1:K , x

τ+t+1)
9: end for

10: return aτ :T

Algorithm 3 ACTION-SCORING

1: Input: ht1:K , hG1:K , at:T−1; Output: c
2: for t′ ← t to T -1 do
3: ht

′+1
1:K ← D(ht

′
1:K , a

t′)
4: end for
5: score c = C(ĥT1:K , h

G
1:K)

6: return c

Figure 10: GOAL INFERENCE: estimate the goal hidden states hG1:K with IODINE. STATE ACQUISTION:
estimate the hidden states hτ1:K of the current scene with amortized interactive inference over τ seed steps.

from future comparison. Specifically, we compute the distances over all pairs of goal and predicted
hidden states and find the pair with minimum distance. This is defined as

C(hG1:k, h
P
1:k) = min

a∈K′,b∈K
D(hGa , h

P
b), (7)

where K’ and K are the set of hidden states in the goal and predicted image respectively. The specifics
of what we use for D are explained in the appendix. Once an action is chosen, the hidden state
argmina∈K′ in HG

K′ is removed from the goal states K ′, representing how the action has succeeded
in placing a particular object at that goal state and no longer needs to be compared to in the cost.
While this works for greedy planning, it may not work in general for multi-step planning. We
instead sum over the distances of each matching pair and no longer prune the set of goal states using
C(hG1:k, h

P
1:k) =

∑
a∈K′ minb∈K D(hGa , h

P
b).

To compute the cost we use a distance function between hidden states, D(Ha, Hb). For the
first environment with single-step planning we use L2 distance of the corresponding subim-
ages. D(Ha, Hb) = L2(I(Ha), I(Hb)) where the masked sub-image of an object is the mask
times the pixel means I(Hk) = mij(Hk) · ĝ(Hk)(ij). For the second environment with multi-
step planning we a different distance function since the previous one may care more about if
a shape matches than if the color matches. We instead use a form of intersection over union
but that counts intersection if the mask aligns and pixel color values are close D(Ha, Hb) =

1 −
∑

i,j mij(Ha)>0.01 and mij(Hb)>0.01 and L2(ĝ(Ha)(ij),ĝ(Hb)(ij))<0.1∑
i,j mij(Ha)>0.01 or mij(Hb)>0.01 . We found this version to work

better since it will not give low cost to moving a wrong color block to the position of a different color
goal block.

3.5 Model and Hyperparameter Details

We use similar model architectures as in [11] and so have rewritten some details from their appendix
here. Differences include the dynamics model, inclusion of actions, and training procedure over se-
quences of data. The posterior distribution p(h|x) is a diagonal Gaussian. The the output distribution
p(x|h) is also a diagonal Gaussian with means µ and global scale σ = 0.1. The decoder outputs the
means µ and mask mk.

Training All models are trained with the ADAM optimizer [16] with default parameters and a
learning rate of 0.0001. We use gradient clipping as in [24] where if the norm of global gradient
exceeds 5.0 then the gradient is scaled down to that norm.

9

Inputs For all models, we use the following inputs to the refinement network, where LN means
Layernorm and SG means stop gradients. The following image-sized inputs are concatenated and fed
to the corresponding convolutional network:

Description Formula LN SG Ch.

image x 3
means µ 3
mask mk 1
mask-logits m̂k 1
mask posterior p(mk|x,) 1
gradient of means ∇

k
L X X 3

gradient of mask ∇mk
L X X 1

pixelwise likelihood p(x|h) X X 1
leave-one-out likelih. p(x|hi 6=k) X X 1
coordinate channels 2

total: 17

The posterior parameters h and their gradients are flat vectors, and we concatenate them with the
output of the convolutional part of the refinement network and use the result as input to the refinement
LSTM:

Description Formula LN SG

gradient of posterior ∇hk
L X X

posterior hk

3.5.1 Architecture

All models use the ELU activation function and the Convolutional layers use a stride equal to 1 unless
otherwise noted.

Observation Model Decoder
Type Size/Ch. Act. Func. Comment

Input: Hi 128
Broadcast 130 + coordinates
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 4 Linear RGB + Mask

Refinement Network
Type Size/Ch. Act. Func. Comment

MLP 128 Linear
LSTM 256 Tanh
Concat [Hi,∇Hi] 512
MLP 256 ELU
Avg. Pool 64
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Inputs 17

10

Dynamics Network The posterior distribution is represented as a diagonal Gaussian and so we
choose the dynamics network to only operate on the mean parameters of this distribution. We carry
over the variance parameters from the previous step to the next step. All models including the final
layer uses ELU activations unless otherwise stated. MLP(128) would denote a multilayer peceptron
with a hidden layer of size 128.

• fo: This inputs Ht
i of size 128, is a MLP(128), and outputs H̃i of size 128.

• fobj-eff: This inputs the concatenated pair of H̃i, H̃j each of size 128, is a MLP(256), and
outputs features of size 128.

• fobj-att: This inputs the concatenated H̃i, H̃j each of size 128, is a MLP(256), and applies a
sigmoid activation to output a single attention scalar of size 1.

• fcomb: This inputs the concatenated H̃i, H̃
eff
i each of size 128, is a MLP(256), and applies

an identity activation to output Ht+1
i .

3.5.2 Single-Step Block-Stacking

The training dataset has 60,000 trajectories each containing before and after images of size 64x64
from [14]. Factorized OP3 models were trained on scenes with 1 to 5 blocks with K = 7 slots.
The unfactorized OP3 ablation is naturally trained with K = 1 slots, while the unfactorized dynam-
ics ablation replaces the regular dynamics network with an MLP whose input and output are the
concatenated latents. We evaluate OP3 on the same set of 110 goal images as Janner et al. [14].

3.5.3 Multi-Step Block-Stacking

The training dataset has 10,000 trajectories each from a separate environment with two different
colored blocks. Each trajectory contains five frames (64x64) of randomly picking and placing blocks.
We bias the dataset such that 30% of actions will pick up a block and place it somewhere randomly,
40% of actions will pick up a block and place it on top of a another random block, and 30% of actions
contain random pick and place locations. Models were trained with K = 5 slots.

4 Additional Experimental Evaluation
Figure 11 shows a visualization of the planning procedure that OP3 executes on single-step block
stacking, included the predicted images that OP3 generates. Given an action image, which depicts
an intervention on the scene (a block raised in the air), OP3 predicts the steady state result from
dropping the block. The figure also shows that OP3 makes predictions that reasonably model the true
dynamics of the environment.

Figure 11: Qualitative results on building a structure. We see how our method is able to accurately and
consistently predict the outcome of the action image, successively capturing the effect of inertial dynamics
(gravity) and interactions with other objects.

11

Figure 12 shows a demonstration of the execution of the inference procedure on single-step block
stacking. OP3 learns to split the objects in the scene into several hidden entity-representations, which
are decoded into the object sub-images shown. When OP3 predicts how the yellow block falls in the
figure, notice that only the sub-image depicting the yellow block changes while the other sub-images
remain unperturbed, showcasing that modeling object separately may provide a benefit for isolating
the relevant variables to a prediction from the irrelevant ones.

Figure 12: We show a demonstration of a rollout. The first four columns show inference iterations on the single
input image, while the last column shows the predicted results using the dynamics module on the learnt hidden
states (top right image is not given as input and shows the true outcome). The bottom 5 rows show I(Hi) at
each iteration, demonstrating how the model is able to capture individual objects, and the dynamics afterwards.

Figure 13 shows several plans executed by OP3, starting from an initial scene of three blocks. Note
that OP3 was trained only on modeling 1 or 2 blocks, so modeling three blocks requires OP3 to
extrapolate its knowledge of object interactions to a different number of objects from what it has been
trained on.

Figure 13: Demonstration of our method on several goals. t = 0 denotes the initial scene that must be
reconfigured to match the goal image. t = 1...5 show the executed actions.

12

	Object-Centric Perception, Prediction, and Planning (OP3)
	OP3: A Model with Object Abstraction
	Interactive Inference for Binding Object Properties to Latent Variables
	Planning

	Experiments
	Combinatorial Generalization without Object Supervision
	Multi-Step Planning
	Real World Evaluation

	Discussion
	Dynamics Model
	Inference
	Amortized Interactive Variational Inference

	Planning
	Cost Function
	Model and Hyperparameter Details
	Architecture
	Single-Step Block-Stacking
	Multi-Step Block-Stacking

	Additional Experimental Evaluation

