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Abstract

Traditional sequential multi-object attention models rely on a recurrent mechanism
to infer object relations. We propose a relational extension (R-SQAIR) of one
such attention model (SQAIR) by endowing it with a module with strong relational
inductive bias that computes in parallel pairwise interactions between inferred
objects. Two recently proposed relational modules are studied on tasks of unsu-
pervised learning from videos. We demonstrate gains over sequential relational
mechanisms, also in terms of combinatorial generalization.

1 Introduction

Numerous studies [35} (17, 27, 1, 22]] show that infants quickly develop an understanding of intuitive
physics, objects and relations in an unsupervised manner. To facilitate the solution of real-world
problems, intelligent agents should be able to acquire such knowledge [31]]. However, artificial neural
networks are still far from human-level understanding of intuitive physics.

Existing approaches to unsupervised learning about objects and relations from visual data can be
categorized into either parallel [[11,[12}10] or sequential [[26} 25,7, 1816} 15, 136]], depending on the
core mechanism responsible for inferring object representations from a single image. One model
from the former group is Tagger [11] which applies the Ladder Network [20] to perform perceptual
grouping. RTagger [19] replaces the Ladder Network by a Recurrent Ladder Network, thus extending
Tagger to sequential settings. NEM [12] learns object representations using a spatial mixture model
and its relational version R-NEM [30] endows it with a parallel relational mechanism. The recently
proposed IODINE [10] iteratively refines inferred objects and handles multi-modal inputs.

On the other hand, the sequential attention model AIR [7] learns to infer one object per iteration over
a given image. Contrary to NEM, it extracts object glimpses through a hard attention mechanism [26]
and processes only the corresponding glimpse. Furthermore, it builds a probabilistic representation of
the scene to model uncertainty. Many recent models have AIR as the core mechanism: SQAIR [18]]
extends AIR to sequential settings, similarly does DDPAE [[15]]. SPAIR [6] scales AIR to scenarios
with many objects and SuPAIR[28]] improves speed and robustness of learning in AIR. The recent
MOoNET [5] also uses a VAE and a recurrent neural network (RNN) to decompose scenes into multiple
objects. These methods usually model relations by a sequential relational mechanism such as an
RNN which limits their relational reasoning capabilities[3]].

Here we present Relational Sequential Attend, Infer, Repeat (R-SQAIR) to learn a generative model
of intuitive physics from video data. R-SQAIR builds on SQAIR which we augment by a mechanism
that has a strong relational inductive bias [2} 30, 21]]. Our explicit parallel model of pairwise
relations between objects is conceptually simpler than a sequential RNN-based model that keeps
previous interactions in its memory and cannot directly model the effects of interactions of previously
considered objects. Our experiments demonstrate improved generalization performance of trained
models in new environments.
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Figure 1: Interaction Network of R-NEM [30]. Figure 2: Relational Memory Core [21].

2 Relational Sequential Attend Infer Repeat

Attend, Infer, Repeat (AIR) [7] is a generative model that explicitly reasons about objects in a
scene. It frames the problem of representing the scene as probabilistic inference in a structured VAE.
At the core of the model is an RNN that processes objects one at a time and infers latent variables
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z"1at encodes the appearance of the object in the scene and z""**® encodes the coordinates according
to which the object glimpse is scaled and shifted by a Spatial Transformer [16]. Given an image x,
the generative model of AIR is defined as follows:

N
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where pg(n) = Geom(n | 6) represents the number of objects present in the scene, pj(z|n) captures
the prior assumptions about the underlying object and p§ (x|z) defines how it is rendered in the image.
In general, the inference for [Equation 1]is intractable, so [[7] employs amortized variational inference
using a sequential algorithm, where an RNN is run for N steps to infer latent representation of one

object at a time. The variational posterior is then:
n
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where ¢ is a neural network which outputs the parameters of the latent distributions: the mean and
standard deviation of a Gaussian distribution for zypat and Zyhere and the probability parameter of
the Bernoulli distributed zpres.

Relational Sequential Attend, Infer, Repeat (R-SQAIR) augments SQAIR through a parallel
relational mechanism. SQAIR extends AIR to the sequential setting by leveraging the temporal con-
sistency of objects using a state-space model. It has two phases: Discovery (DISC) and Propagation
(PROP). PROP is active from the second frame in the sequence, propagating or forgetting objects
from the previous frame. It does so by combining an RNN, which learns temporal dynamics of
each object, with the AIR core which iterates over previously propagated objects (explaining away
phenomena). DISC phase uses the AIR core, conditioned on propagated objects, to discover new
appearances of objects. For a full description of AIR and SQAIR we refer to previous work [7} [18]].

R-SQAIR retains the strengths of its predecessors and improves their relational capabilities. More
specifically, SQAIR relies on AIR’s core RNN to model the relations. However, an RNN has only
a weak relational inductive bias [3]], as it needs to compute pairwise interactions between objects
sequentially, iterating over them in a specific order. R-SQAIR, on the other hand, employs networks
with strong relational inductive bias which can model arbitrary relations between objects in parallel.
To construct conceptually simple yet powerful architectures that support combinatorial generalization,
we use the following two methods: Interaction Network (IN) [30] and Relational Memory Core
(RMC) [21].

The R-SQAIR generative model is built by extending the PROP module of SQAIR to include relations
vt = I'(z¢—1), where T is the relational module and z;_; are object representations from the previous
timestep, defined as follows:

T
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The discovery prior pP (zP*|z!*) samples latent variables z"* for new objects that enter the frame,
by conditioning on propagated variables z.*. The propagation prior p* (z!*|~;) samples latent
variables for objects that are propagated from the previous frame and removes those that disappear.
Both priors are learned during training. We recover the original SQAIR model for v; = z;_1. The
inference model is therefore:

T
q¢(z1.7 | X1.7) = Hqé? (Z?" | Xtyzft) H al (z; | ', hi), “)
t=1 €0y 1

where hi are hidden states of the temporal and AIR core RNNs. Discovery qf is essentially the
posterior of AIR. Again, the difference to SQAIR lies in the propagation module qg , which receives
relations -, as the input.

Relational Module

Interaction Network Our first relational module is the Interaction Network (IN) of R-NEM [30],
depicted in which is closely related to Interaction Networks [2| [34]. Here, the effect on
object k of all other objects i # k is computed by the relational module ~; = I''"(z;_1), which in
the case of IN is defined as follows (for simplicity we drop time indices):

2= f(2k), ri=9(2r:2)), Br=>_ gan(€ri) ger(€ri)s T = [zn;ex], (5)
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where z; = {2}, Zi1ere» Zbres ) from the previous time step. First, each object z; is transformed

using an MLP f to obtain 2;, which is equivalent to a node embedding operation in a graph neural
network. Then each pair (2, 2;) is processed by another MLP g, which corresponds to a node-to-
edge operation by encoding the interaction between object k£ and object 7 in the embedding &, ;. Note
that the computed embedding is directional. Finally, an edge-to-node operation is performed, where
the effect on object k is computed by summing the individual effects g.(&x ;) of all other objects i
on the particular object k. Note that the sum is weighted by an attention coefficient ¢, (&% ;), which
allows each individual object to consider only particular interactions. This technique also yields
better combinatorial generalization to a higher number of objects, as it controls the magnitude of the
sum.

Relational Memory Core We compare the effects modeled by IN to the effects learned by a
Relational Memory Core (RMC), vy = I'PMC(z, ;). RMC learns to compartmentalize
objects into memory slots, and can keep the state of an object and combine this information with the
current object’s representation z;. This is achieved by borrowing ideas from memory-augmented
networks [29, 8, 9] and interpreting memory slots as object representations. The interactions between
objects are then computed by a multi-head self-attention mechanism [32]] Finally, recurrence for
the sequential interactions is introduced, resulting in an architecture that is akin to a 2-dimensional
LSTM[14], where rows of the memory matrix represent objects. The model parameters are shared
for each object, so the number of memory slots can be changed without affecting the total number of
model parameters. For a full description, we refer to previous work [21]].

3 Experiments

We analyze the physical reasoning capabilities of R-SQAIR on the bouncing balls dataset, which
consists of video sequences of 64x64 images. As done in SQAIR experiments, we crop the central
50x50 pixels from the image, such that a ball can disappear and later re-appear. Although visually
simple, this dataset contains highly complex physical dynamics and has been previously used for
similar studies (R-NEM [30]). The method is trained in SQAIR-like fashion by maximizing the
importance-weighted evidence lower-bound IWAE [4]], with 5 particles and the batch size of 32.
Curriculum learning starts at sequence length 3 which is increased by one every 10000 iterations, up
to a maximum length of 10. Early stopping is performed when the validation score has not improved
for 10 epochs.

Qualitative evaluation of R-SQAIR is present in Each column represents one time step in
the video. The first row is about the R-SQAIR model trained and evaluated on videos with 4 balls,
with object representations highlighted by different color bounding boxes. In the second row the same
model is evaluated on datasets with 6-8 balls. Note that R-SQAIR disentangles objects already in
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Figure 3: R-SQAIR trained on sequence of 4 bouncing balls (top rows) and evaluated on 6-8 bouncing balls.
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Figure 4: Log-likelihood and relational log-likelihood of R-SQAIR and SQAIR on the bouncing balls task.

the first few frames and later only refines the learned representations. At each time step, it computes
up to k = 4 object representations, by considering objects from the previous frame and the learned
dynamics.

For all SQAIR hyperparameters we use default values, except for the dimensionality of latent variable
Zwhat, Which is set to 5 instead of 50. This reflects the low visual complexity of individual objects in
the scene. For similar reasons, the embedding dimensionality of IN we use is also set to 5. We use
a version of the IN module with attention coefficients to compute the weighted sum of the effects.
In total, this adds 9 389 parameters to the 2 726 166 of the default SQAIR implementation. It also
suggests that improved performance is a result of learning a better propagation prior instead of just
increasing the number of model parameters.

RMC has more hyperparameters to choose from. We use self-attention with 4 heads, each of
dimensionality 10. The number of memory slots is 4 and coincides with the total number of
sequential attention steps we perform. Finally, RMC can perform several computations of attention
per time step, where each corresponds to one message passing phase. As we are interested only
in collisions, we compute attention only once per time step. This results in 98 880 parameters.
Comparing the size of the SQAIR model, we obtain a conclusion similar to the one for the case of IN.

Note that the last frames in are sampled from the learned propagation prior. This enables
us to evaluate the role of the relational module, as it is responsible for learning the object dynamics.
Moreover, as the models are stochastic, we train 5 models for each architecture and sample 5 different
last frames. We compare models in terms of data log-likelihood and relational log-likelihood, which
takes into account only the objects which are currently collzdlng (ground truth available in the dataset).
The evaluation on the test set with 4 balls shows an increase in average data log-likelihood from
399.5 achieved by SQAIR (0.21 relational) to 429.2 by R-SQAIR(IN) (relational 1.95) and 457.32
by R-SQAIR(RMC) (relational 3.62). Error bars in[Figure 4] represent the standard deviation of the
stochastic samples from the trained models.

We test generalization of R-SQAIR by evaluating the models trained on sequences with 4 balls on
a test set with videos of 6-8 balls. Both qualitative (Figure 3] bottom row) and quantitative results
show that R-SQAIR is capable of generalizing, with increase in relational log-likelihood from -164.1
achieved by SQAIR to -96.7 achieved by R-SQAIR(IN) and -97 achieved by R-SQAIR(RMC). Larger
margins between relational losses of R-SQAIR and SQAIR on the test set with 6-8 balls suggest
higher generalization capabilities of R-SQAIR.

4 Conclusion

Graph neural networks are promising candidates for combinatorial generalization, a central theme
of Al research [3,131]. We show that a sequential attention model can benefit from incorporating an
explicit relational module which infers pairwise object interactions in parallel. Without retraining, the
model generalizes to scenarios with more objects. Its learned generative model is potentially useful
as part of a world simulator [24} 23|13} [33]].
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