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Abstract

We consider the problem of learning in graph structured domains and posit that an
observed graph is the outcome of an underlying optimization mechanism (cause)
that drives the formation of the edges in such domains. We propose a maximum
entropy framework that unifies a novel structured policy network (forward model)
with inverse reinforcement learning to discover this underlying mechanism in the
form of latent reward function from the observed graph (inverse problem). The
learned components can be effectively used to generate or infer desired structural
and semantic properties of graph. We evaluate our method on the task of graph
generation and demonstrate the generalizability of our approach across instance
sizes and graphs that share the underlying formation mechanism of a given domain.

1 Introduction
Graphs are natural models of information in many problem domains, spanning recommendation
systems, knowledge graphs, biological networks, social networks and many more. Learning over
graph structured data has emerged as an important task that has proven to be challenging in general
due to their non-Euclidean nature. This has led to massive efforts in building sophisticated machine
learning approaches for learning in graph structured domains [1, 2]. Most approaches either focus
on extracting features from the observed graph for use in downstream applications or learning a
distribution over a family of graphs for generating new graphs [3]. In this work, we inspire from the
field of Economics [4] and take a novel optimization perspective on learning over graphs. Specifically,
we posit that there exists an underlying optimization mechanism in graph structured domains that
drives the formation of the observed graph structure. A sound graph formation model can help
determine how the networks come into existence, which can be of fundamental importance in a
variety of applications where the network architecture often influences decision making and final
outcomes [4, 5]. As graph formation models are unknown in many domains, there is a conspicuous
need to build learning techniques that can discover an underlying optimization mechanism. To this
end, we pose and address the following questions: (i) How can one effectively discover the latent
optimization model that governed the formation of an observed graph and (ii) How can one leverage
such a learned model to generate, learn or infer desired properties over graphs?

Recently, deep learning over graphs [2] have successfully addressed problem of encoding complex
graph information in continuous vectors for downstream applications. Advances in deep reinforce-
ment learning (RL) [6, 7] has enabled learning of optimal policies directly from raw state information
in graphs with combinatorial search spaces [8, 9, 10]. However, these techniques require large sample
size, cannot scale to large graphs, or require a known domain-specific reward function, which are
significant restrictions for general applications [9, 8, 11, 12, 13, 10, 14].

Present Work— In this work, we propose GraphOpt, an efficient and scalable maximum entropy
framework that unifies a novel structured policy network with inverse reinforcement learning to learn
an optimization model of the observed graph. GraphOpt is based on the key observations that (i)
graph formation is a sequential process, in which the structure at any intermediate time influences the
creation of specific new links in the future; and (ii) this formation phenomenon can be modeled as the
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outcome of a sequential decision-making process that optimizes an underlying unknown objective
function. Specifically, GraphOpt learns a structured policy network that creates edges in a sequential
manner to construct a graph with minimal differences in graph properties from an observed graph.
As the true graph formation objective function is unknown, the construction policy is trained using a
latent reward function learned via inverse reinforcement learning (IRL) (solving the inverse problem).
The structured policy network uses a graph neural network to capture the complex information
of a partially constructed graph in a continuous vector representation. Unlike previous works on
reinforcement learning over graphs, we propose a novel continuous latent action space that is induced
directly from data and is independent of the size of graph, thereby ensuring that GraphOpt scales
to large graphs. For efficient learning, we design a maximum entropy based training procedure that
leverages Soft Actor Critic [15] and Guided Cost learning [16] to learn jointly the graph construction
policy and a latent reward that induces the underlying graph formation objective.

We evaluate the practical usefulness of GraphOpt in the following tasks: (i) Exposing Structure
Optimization Mechanism — the ability of the learned reward function and graph construction policy
to construct graphs with similar properties as that of the observed graph and (ii) Generalization
Capacity — the ability of the learned components to generalize across graphs of different sizes and
characteristics that share the same underlying formation mechanism of a given domain.

2 Proposed Approach
2.1 Formation Mechanism as a Markov Decision Process

The graph formation mechanism is the central focus of our work and one aspect of our work can be
considered as solving the inverse problem of learning (instead of hand-designing) the utility function
described in [4] using data-driven approach. Let G = (V, E ,Y,X ) denote a graph, where V is the set
of nodes, E is the set of edges, Y is the set of edge types and X is the set of node features. We define
a Graph Formation Markov decision process (GF-MDP)M = (S,A,R, P ) as follows:

State st ∈ S. The state of the environment st at time t is the partially constructed graph Gt =
(V, Et,Yt,X ). Initial state s0 = G0 is a graph with all nodes but no edges i.e. Et = ∅. For ease of
exposition and w.l.o.g., we let st = (V, Et) represent a state in this paper.

Action at ∈ A. Each step in sequential process involves the creation of an edge between two nodes
in V . Node feature information, represented as real-valued vectors, plays a key role in determining the
compatibility of two nodes for edge creation. To capture this insight, we propose a novel continuous
latent action space for graph structured environments that leads to data-induced continuous action
space (unlike large discrete space used in previous works [17]), thereby enabling support for large
graphs. Specifically, an action at ∈ A is defined as a 2-tuple (a(1), a(2)), where each component
a(i) ∈ Rd is interpreted as a node feature representation.

Transition Dynamics. The transition function P (st+1|st, at) is defined such that an action mapped
to edge (vi, vj) chosen at a state st = (V , Et) produces a next state st+1 = (V , Et ∪ (vi, vj)). As our
goal is to construct G′ with similar properties as the observed G, all edges are allowed for selection.

RewardR. A key objective of our work is to learn an underlying optimization objective , that drives
the the formation of the observed graph. The GF-MDP perspective gives a concrete instantiation of the
latent objective: It is exactly the expected return Eπφ,P [

∑T
t=0R(st)] for executing a policy πφ with

transition function P under a latent reward functionR evaluated at every state. In contrast to existing
RL frameworks for modeling graph structured data [9], which impose restrictive domain-specific
forms on the reward function, we propose to learnR directly from the observed graph.

2.2 GraphOpt’s Neural Policy Architecture

GraphOpt operates in a challenging non-Euclidean graph environment that we address using a novel
graph neural network (GNN) based structured policy network. At time step t, the GNN encodes the
graph state st into a low dimensional representation for the policy to compute a corresponding action
at. We first describe the action selection procedure and then outline the state encoder architecture.

2.2.1 Action Selection

We design a stochastic actor that takes as input state st and outputs a link formation action at. As
link formation often depends on node features, whereby nodes with similar features have higher
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probability of forming a link, we propose a novel continuous latent action space which induces
action representations over a node feature space learned from data. Specifically, action at is a 2-tuple
(a(1),a(2)) whose components a(i) ∈ Rd are mapped to the node feature representations so as to
select two nodes to construct an edge. Let v ∈ V denote a node and let zv ∈ Rd denote its embedding
(learned in Section 2.2.2). Under a Gaussian policy πφ, the next action is computed as follows:

[µ, log
(
σ2
)
] = π(st) = gφ(Encω(st)) a(1),a(2) ∼ N (µ, log

(
σ2
)
) (1)

where gφ is a standard two layer MLP with the policy parameters φ. Encω(·) is a state
encoder for which we employ a graph neural network architecture with parameters ω (Sec-
tion 2.2.2). Then we select two nodes to construct an edge using a similarity criterion: vi =
argmaxzv : ∀v∈V σ〈a(i), zv〉 for i = 1, 2, where 〈·, ·〉 is a dot product and σ is the sigmoid function.
As the mapping from continuous action vectors to nodes is external, GraphOpt is fully differentiable.

2.2.2 Structured State Encoder

During the graph formation process, the present structure of the graph may be a crucial factor that
determines a new edge creation. To capture this, at each step t of the environment, we compute
the state information as a function of graph structure parameterized by the graph neural network.
Specifically, the state st is represented by a node embedding matrix Zt ∈ Rnt×d. We use a p-step
inductive message propagation architecture inspired from [1] to compute this matrix based on the
graph constructed at any time step t, independent of the number of nodes.

2.3 Maximum Entropy Learning Procedure

Our approach comprises of three learning objectives to learn: (i) Graph construction policy π, (ii)
Latent reward functionR, and (iii) State encoder network. Off-policy RL methods such as DDPG [18]
often suffer from stability issues while on-policy methods such as PPO [19] suffer from poor sample
efficiency. To this end, we adopt Soft-Actor-Critic (SAC) [20, 15], a max-ent variant of the actor-
critic framework, and combine it with max-ent based Guided Cost Learning (GCL) objective [16] to
facilitate joint learning of the graph construction policy network and the latent reward function for
the graph environment. For GCL, the measured trajectories are collected in the form of permutations
over the ordering of the edges in original graph. All permutations can be considered “expert” as
each starts from same initial state (E0 = ∅) and end at same final state (original graph) while not
containing any wrong edges in the intermediate states. During training, an epoch starts with initial
state representation computed using state encoder when there is no edge between the nodes. At each
step, the agent either chooses to create a new edge or repeat an already created edge. We train the
policy, Q and representation networks after every few steps taken by the environment, while the
reward network is trained after end of each epoch.

In contrast to generative adversarial formulations of inverse problem for imitation learning [21],
which converge to an uninformative discriminator, maximum entropy inverse RL satisfies the key
objective of our work by recovering a useful latent reward.

3 Experiments
We evaluate the effectiveness of our approach from the following standpoints: (i) Ability to expose
the underlying structural optimization mechanism in the form of latent reward function and (ii)
Generalization capacity across graph environments with varying degree of differences between them.
Data specifications and metrics are made available in the Appendix Section A.1 and A.2.

3.1 Exposing Structure Optimization Mechanism

Our method jointly learns a stochastic policy to construct a graph and the latent reward function,
using measured trajectories extracted from an observed graph. Consequently, our learned policy
is capable of constructing edges given a set of nodes such that the constructed graph resembles
the observed graph with respect to various graph properties (the learned reward function can be
interpreted as composite function of such properties that are optimized during policy training).
Hence, the effectiveness of GraphOpt for generating graphs with similar properties as the observed
graph serves as a natural measure to evaluate its performance and we compare GraphOpt against
representative state-of-art baselines for generative modeling of graph structured data.

Setup. For these experiments, we use both synthetic and real world graphs that span different domains,
characteristics and sizes. We use Barabasi-Albert (synthetic), Political Blogs [22] and Cora-ML [23]
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(Table 2 in Appendix). For comparison, we use the following baselines: NetGan [24], Degree-
Corrected Stochastic Block Model [25], Block two-level Erdos-Renyi random graph model [26] and
Variational Graph AutoEncoder (VGAE) [27]. For all methods, we generate 5 graphs for evaluation
and report average and deviation over various graph based statistics (Table 1). Greater similarity to
the statistics of original graph (first row) is better. We also report the difference between statistics of
constructed graph from that of original graph in Appendix A.4 for further interpretability.

Results. The major observation from the results in Table 1 is that GraphOpt, in the absence of a
known objective function, is able to construct graphs with similar properties as the observed graph.
Surprisingly, GraphOpt is able to consistently compare or exceed dedicated baselines in many cases.
Specifically, Figure 1 (a-d) demonstrate the ability of Graphopt to capture intrinsic properties of graph
structure which serves as an evidence of learning a useful objective function that was optimized by the
construction policy. Further, many baseline methods work well (except VGAE which is purely node
embedding approach) on specific metric as they are designed to optimize for a particular property,
while the key objective of GraphOpt is to discover such an optimization function which provides
flexibility of adapting for various properties which boosts its performance.

Table 1: Graph Based statistics for BA, Political Blogs and Cora-ML (Full results in Appendix A.4)
Barabasi Albert Political Blogs CORA-ML

Model Triangle Count Clustering Coeff. Max Degree Triangle Count Clustering Coeff. Max Degree Traingle Count Clustering Coeff. Max Degree
Observed Graph 504 0.1471 33 303129 0.319 351 4890 0.2406 168

DC-SBM 269.33± 33.171 0.059± 0.057 23.66± 2.51 143152± 27723.46 0.026± 0.003 207.67± 6.65 1410± 74.90 0.07± 0.048 171± 16.52
BTER 262± 45.902 0.098± 0.098 22± 0 165299.33± 21975.26 0.14± 0.043 197± 2.64 2931± 54.61 0.04± 0.004 195.67± 24.33
VGAE 146.66± 45.092 0.008± 0.0080 30.33± 0.57 4354.33± 1290.35 0.002± 0.001 196.33± 3.21 21.33± 11.50 0.016± 0.005 9.33± 3.05
NetGan 344.33± 31.62 0.063± 0.054 33± 1.738 168913.66± 25054.51 0.19± 0.023 215± 13 1751± 105.27 0.18± 0.015 161± 4

GraphOpt 472.33± 20.40 0.11± 0.11 31.33± 1.52 197862± 11474.69 0.25± 0.029 221.66± 9.50 3938.33± 49.21 0.205± 0.013 169± 5.56
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Figure 1: (a-b) Original vs. GraphOpt: Cora-ML (c-d) Original vs. GraphOpt: Pol.Blogs

3.2 Generalization Capacity

One of the key outcomes of our approach is its intrinsic ability to generalize—the learned reward
function is trained to capture the underlying formation mechanism of a particular domain and the
policy is trained to construct graphs for this domain. We performed three generalization experiments:
Generalization over size of instances: Train on a BA graph of 200 nodes, take an original BA graph
of 1000 nodes and use that to evaluate the new graph of 1000 nodes generated using previously
learned policy and reward. Generalization across graph - full model: Train on the Cora-ML dataset
and then evaluate the full model (learned policy, reward function and representation network) on a
CiteSeer graph to perform construction. Generalization across graph - Latent Reward function:
Train GraphOpt on the Cora-ML dataset and then instantiate a new model but transfer the learned
reward function to this model while the other components are untrained. We then train this new
model on the CiteSeer dataset with fixed reward function. The learned framework is evaluated as
before. The results are provided in Appendix A.3.

4 Conclusion
We presented a novel perspective on learning over graphs by posing it as an inverse problem of
learning the underlying cause of the observed graph. Our forward model is based on reinforcement
learning framework and uses a graph neural network based structured policy network to capture
intricate structural dependencies. Differently from a large part of literature on reinforcement learning
over graphs that optimize highly curated task-specific objective, our approach enables the recovery
of underlying task-agnostic latent objective function that is generalizable across different size and
characteristics of graphs that share common underlying formation mechanism. We demonstrate that
the recovered function allows to learn policies that provides quantitatively superior performance on
graph generation task compared to state-of-art task-specific baselines. Extending our optimization
perspective to other learning tasks over structured data pose interesting future direction.
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A Datasets, Metrics and further Experiment Results

A.1 Datasets

Exposing Structure Optimization and Generalization Experiments. Table 2 provide statistics
and reference to the dataset used for generative experiments.

Table 2: Dataset Statistics for Construction Experiments
Graph Nodes Edges Density Avg. Degree Source

Barabasi-Albert (BA) 100 384 0.0384 7.68 Synthetic
Political Blogs 1224 19090 0.0127 27.316 [22]

CORA-ML 2810 5429 0.001 3.898 [23]
CiteSeer 3327 4732 0.00042 2.811 [28]

A.2 Metrics

We provide several results on our constructed graphs and below we discuss some information about
the metrics reported in the tables and figures:

• Graph Construction Experiments We chose the following statistics that cover various aspects
of graph structure

– Triangle Count: Number of triangles in the graph
– Clustering Coefficient: measure of the degree to which nodes in a graph tend to cluster

together.
– Longest Connected Component (LCC): Size of the largest connected component.

– Assortativity: Pearson correlation of degrees of connected nodes, A = cov(X,Y )
σXσY

where
the (xi, yi) pairs are the degrees of connected nodes.

– Max Degree: Maximum degree of all nodes in the graph.

In addition to the above quantitative metrics, we also report visual comparison between distributions
of degree and clustering coefficient for graphs that are constructed by GraphOpt and the original
observed graph. For the IRL reward curve we display plot of Average Returns vs the number of
iterations which is standard empirical measure of evaluating convergence in reinforcement learning.

A.3 Generalization Experiments

One of the key outcomes of our approach is its intrinsic ability to generalize—the learned reward
function is trained to capture the underlying formation mechanism of a particular domain and the
policy is trained to construct graphs for this domain. Hence, it is important to evaluate how GraphOpt
generalizes to variations in graphs within the same domain. We performed three generalization
experiments: Generalization over size of instances: Train on a BA graph of 200 nodes, take an
original BA graph of 1000 nodes and use that to evaluate the new graph of 1000 nodes generated
using previously learned policy and reward. Generalization across graph - full model: Train on the
Cora-ML dataset and then evaluate the full model (learned policy, reward function and representation
network) on a CiteSeer graph to perform construction. Generalization across graph - Latent
Reward function: Train GraphOpt on the Cora-ML dataset and then instantiate a new model but
transfer the learned reward function to this model while the other components are untrained. We
then train this new model on the CiteSeer dataset with fixed reward function. The learned framework
is evaluated as before. Table 3 and Figure 2 (a-c) demonstrates GraphOpt’s versatile capacity to
generalize across instances within the same domain. The results demonstrate both the inductive
ability of our framework and the usefulness of the learned objective towards generalization. We also
demonstrate the convergence of our method for Cora Dataset in Figure 2 (d). It depicts both the
expert reward curve and generated reward curve. The goal in IRL is for the policy generated curve to
approach the expert curve at convergence.
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Figure 2: (a) BA-100 (train) vs. BA-1000 (eval) (b) CiteSeer-original vs. CiteSeer (trained using
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Table 3: Generalization Performance Comparison
Triangle Count Clustering Coeff. Max Degree

BA-200 (train) 780 0.12 43

BA-1000 (observed) 1632 0.0407 115

BA-1000 (eval) 1470.66± 25.71 0.036± 0.0044 119.33± 2.081

CiteSeer Dataset 3501 0.1414 99

Cora (train) 4890 0.241 168
Citeseer (reward) 2847.66± 57.13 0.098± 0.0010 80.66± 1.527

Citeseer (eval) 2234± 58.96 0.084± 0.004 70.66± 2.081

A.4 Experiments on Exposing Structure Optimization Mechanism

In this section, we provide earlier construction results (Table 1) with two more statistics (Largest
connected component and Assortativity) and different perspective. For interpretability, we report
average absolute difference (in parantheses) of various graph based statistics between original and
generated graph (Table 4,5,6). Smaller difference to the statistics of original graph (first row) is better.

Table 4: Graph Statistics for BA Graph
Model Triangle Count Clustering Coeff. LCC Assortativity Max Degree

Observed Graph 504 0.147 100 -0.096 33

DC-SBM 269 (235) 0.060 (0.087) 73 (27) -0.008 (0.088) 24 (9)
BTER 262 (242) 0.098 (0.049) 65 (35) -0.013 (0.083) 22 (11)
VGAE 147 (357) 0.008 (0.139) 91 (9) -0.007 (0.089) 30 (3)
NetGan 344 (160) 0.064 (0.083) 99 (1) -0.036 (0.06) 33 (0)

GraphOpt 472 (32) 0.110 (0.037) 94 (6) -0.088 (0.008) 31 (2)

Table 5: Graph Statistics for Political Blogs Graph
Model Triangle Count Clustering Coeff. LCC Assortativity Max Degree

Observed Graph 303129 0.320 1222 -0.221 351

DC-SBM 143152 (159977) 0.026 (0.294) 425 (797) -0.025 (0.196) 208 (143)
BTER 165299 (137830) 0.147 (0.173) 544 (678) -0.020 (0.201) 197 (154)
VGAE 4354 (298775) 0.002 (0.318) 709 (513) -0.005 (0.216) 196 (155)
NetGan 168914 (134215) 0.120 (0.2) 860 (362) -0.166 (0.055) 215 (136)

GraphOpt 197862 (105267) 0.255 (0.065) 925 (297) -0.173 (0.048) 222 (129)

Table 6: Graph Statistics for CORA-ML Graph
Model Triangle Count Clustering Coeff. LCC Assortativity Max Degree

Observed Graph 4890 0.241 2485 -0.066 168

DC-SBM 1410 (3480) 0.076 (0.165) 2513 (55) -0.049 (0.017) 171 (3)
BTER 2931 (1959) 0.044 (0.197) 2357 (101) 0.007 (0.073) 196 (28)
VGAE 21 (4869) 0.017 (0.224) 2485 (27) -0.002 (0.064) 9.3 (158.7)
NetGan 1751 (3139) 0.018 (0.061) 2472 (14) -0.068 (0.002) 161 (7)

GraphOpt 3938 (952) 0.205 (0.036) 2333 (125) -0.059 (0.007) 1
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