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Abstract

Program synthesis has recently emerged as a promising approach for image pars-
ing. However, prior work has relied on supervised learning using training im-
ages paired with ground truth generating programs. We present an unsupervised
learning algorithm that learns to parse constructive solid geometry (CSG) images
into a context-free grammar. In addition, most prior work has relied on differ-
entiable image renderers, whereas most renderers for practical applications are
non-differentiable. We design a grammar-encoded tree LSTM to effectively con-
strain our search space by leveraging the structure of the context-free grammar
while handling non-differentiable renderers via REINFORCE and encouraging
exploration by regularizing the objective with an entropy term. We propose a
lower variance entropy estimator for effective exploration. We demonstrate the
effectiveness of the proposed algorithm on a synthetic 2D CSG dataset.

1 Introduction

The goal of our paper is learning to parse images into programs which can be described by a context-
free grammar, such as constructive solid geometry (CSG) image [Hub90]. [Sha+18] have studied
the same problem using supervised learning where paired images and programs are available for
training. However, in this paper we tackle a more general image parsing problem where the ground
truth program is not available for training. We aim to solve this problem with only target images as
input without any other form of data supervision.

In addition, our proposed approach makes use of only a non-differentiable image renderer. While
prior work has relied on differentiable renderes, for most real-world applications the renderers which
take programs as inputs are usually non-differentiable. The lack of direct gradient information from
the non-differentiable renderer implies that we can only train our model based on comparing the final
reconstructed image to the target image. We use REINFORCE as our main building component.

A naive implementation of program generation is using a simple RNN, which is not guaranteed to
always generate grammatically correct programs. However, a renderer would only output blank
canvases for invalid program input. Therefore, it is necessary to limit the search space to only
valid programs. We leverage tree LSTM to impose a structure on our output space such that the
output grammar is always valid, thus effectively reducing the search space. Another crucial step to
finding the optimal solution is to encourage the exploration of the search space. We can achieve that
by regularizing our training objective with an entropy term. We further propose a lower variance
estimator of the entropy by leveraging the tree structure and sampling in the tree without replacement.
We demonstrate experimentally that these three design features are essential to successfully parsing
images into programs in a reasonable time frame.

Program synthesis has been a growing interest to researches in machine learning [Bal+17; SPS18;
Dev+17; ZW18]. Prior works on converting images to programs are more directly related to our
work [Sha+18; Ell+19; Tia+19; Ell+18]. The setup of our work closely follows [Sha+18] which was
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extended by [Ell+19]. Both works rely on supervised pretraining heavily before using REINFORCE
to fine tune the models [Tia+19] incorporated a differentiable renderer into the learning pipeline while
we treated our renderer as an external procedure independent from the learning process. [Ell+18]
used a neural network to extract shapes from hand-drawn sketches, formulating the grammatical
rules as constraints and obtaining the final program by solving a constraint satisfaction problem. This
process can be very computationally expensive compared to a pure neural-network appraoch.

2 Problem Definition

The input of the model is an image constructed from basic shapes such as triangle, circle or triangle,
each with a designated size and location. The output of the model is a program to reconstruct the
input in the format of context-free grammar (CFG).

In this paper, we will use constructive solid geometry (CSG) image [Hub90] as an example for
presentation. The sample images can be found in Appendix A.1. The CFG for CSG includes the
binary shape operations of union, subtraction and intersection. The context-free grammar rules are as
follows:

S → E; E → EET | P ; T → + | − | ∗; P → SHAPE1 | · · · | SHAPEn. (1)

S, T , and P are non-terminal symbols for start, operations, and shapes, respectively. The operations
are +, ∗ and − which represent union, intersection and subtraction, respectively.

3 Proposed Algorithm

Our model consists of a CNN encoder for reading the canvas, an embedding layer for the action
tokens and an RNN for generating the grammatical program sequences. The model parameters θ are
trained with entropy regularized REINFORCE [Wil92] updates, ∆θ ∝ Es∼pθ(s)[∇θ log p(s)f(s)] +
α∇θH(s), where H(x) is the entropy of the sequence s for exploration and f(s) is a user-defined
reward function.

The output program is converted to an image by the non-differentiable renderer. The renderer outputs
blank images for invalid program inputs. The generated image is compared to the target image and a
reconstruction-based reward is computed. Our reward function consists of the Chamfer distance and
a pixel-wise distance between the two images, R(x,y) = max(δ, (1− Ch(x,y)

d )γ +
∑

x∩y∑
x ), with x

representing the original image and y representing the generated image, d the canvas diagonal length,
and γ = 20 in this setting. We cropped the reward falling under δ = 0.3 because the reward value is
no longer informative.

Our setup is quite similar to [Sha+18] so far. However, several additional components were key to our
model’s success, which we detail below. The naive extension from [Sha+18] does not learn to generate
correct grammatical programs as is. We therefore introduce a grammar-encoded tree LSTM to ensure
a valid output sequence. The tree LSTM also relies on an image stack to provide intermediate images.
Finally, we introduce a lower-variance entropy estimator to improve the estimation of our objective.

3.1 Grammar-Encoded Tree LSTM

There are three types of actions (non-terminals) involved in the grammatical program generation:
shape selection (P ), operation selection (T ), and grammar selection (E). Grammar selection in this
problem setting includes E → EET , and E → P as in the grammar definition (1), which decides
whether the program will keep expanding or not.

Let the set of shapes to be P , the set of operations to be T and the set of grammar tokens to be G. In
the proposed tree LSTM, the output space of the model is of size |P|+ |T |+ |G|. A stack is used
here for each example to keep track of the program. All stacks start with a start symbol S and an end
symbol $. For each symbol popped from the stack, its corresponding valid output space only includes
the actions on the right hand side of the grammar rules (1). We therefore mask the invalid actions by
adding a vector to the layer before softmax. The vector has a very large negative number in the entry
corresponding to the invalid actions. This makes sure that grammatically invalid options will have
close to zero probability of being sampled. The corresponding output space of an end symbol only
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Figure 1: Left) Grammar-encoded tree LSTM at work. The top layer of canvases demonstrates the image stack
and the bottom layer demonstrates the grammar stack at each time step. The tilted token in each time step
represents the action popped and the letters below the tokens are the actions pushed. (Right) formulation of a
CSG image example.

consists of the end symbol so that no more tokens will be produced. Leaf tokens (various shapes and
operations) will not be added to the stack as they do not contribute to the program structure. Final
programs that become the inputs to the renderer consist of shape and operation tokens only, with all
grammatical tokens having been substituted out.

Whenever the output of the model is a shape token, the image of the shape will be pushed onto the
corresponding image stack. When the output is an operation token, the top two images are popped
from the image stack, the operation is applied on them, and the resulting image is pushed back onto
the stack. The input of the LSTM at each time step includes the encoded target image, the encoded
intermediate images from the image stack, the embedded token popped from grammar stack, and the
hidden state from the LSTM’s last time step. An example is shown in Figure 1.

3.2 Exploration

We adopt two features to encourage exploration – entropy regularization and sampling without
replacement [KVW19].

The sampling without replacement algorithm chooses the top k branches to expand based on the Gφi,j
score at time step j. The Gφi,j score is sampled from Gumble(φi,j), where φi,j is the log probability
of i-th partial sequence at time step j, conditioned on its parent’s Gφi,j−1

score being the maximum.
See Algorithm 1 for details in the branching process.

The sampling without replacement algorithm requires correct scaling of the objective functions to
ensure unbiasness. The scaling term is pθ(s

i)
qθ,κ(si)

. pθ(si) represents the probability of the sequence si

and S represents the set of all sampled sequences si for i = 1, 2, · · · ,K. κ is the (k + 1)-th largest
Gφi,j score among all the possible branches and qθ,κ(si) = 1− exp(− exp(φi,j − κ)). Additional

normalization terms W i(S) = W (S) − pθ(s
i)

qθ,κ(si)
+ pθ(s

i), W (S) =
∑
i∈S

pθ(s
i)

qθ,κ(si)
are employed

to reduce variance but they increase bias in the final estimation. The exact objective is as follows
[KHW19]: ∇θEs ∼ pθ(s)[f(s)] ≈

∑
si∈S

1

W i(S)
· ∇θpθ(s

i)

qθ,κ(si)
(f(si)− B(S)

W (S)
) (2)

The baseline term is defined as B(S) =
∑
i∈S

pθ(s
i)

qθ,κ(si)
f(si). Incorporating a baseline into the

REINFORCE objective is a standard practice in order to reduce variance in the estimation.

Entropy estimation uses a similar scaling scheme as the REINFORCE objective. Let the sequence si
consist of elements X1, X2, X3, · · · , Xn. We can calculate the entropy at each step and the entropy
of a sequence can be decomposed as a summation of entropy at each step:

H(X1, X2, X3, · · · , Xk) ≈
n∑
j=1

1

Wj(S)

∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
H(Xj |X1 = x1, X2 = x2, · · · , Xj−1 = xj−1)

(3)
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Figure 2: This shows the advantages of our algorithm design. Left: Demonstrating the effect of the beam search
on the training reward per batch. With beam search (200 examples per batch with 4 beams), the algorithm’s
performance approaches the optimal reward while the algorithm is stuck in a local optimum without it (800
examples per batch). Middle: Demonstrating the effect of tree LSTM structure and entropy regularization. The
algorithm struggles to generate valid grammar without tree LSTM structure and it learns much slower without
entropy regularization. Right: The algorithm learns to generate longer program with curriculum learning.

where Wj(S) =
∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
and sj denotes the first j elements of the sequence s. Excluding the

1
Wj(S)

term, the estimator is unbiased. The normalization term reduces the variance of the estimator.

4 Experiments

We used a synthetic dataset to test our algorithm and assess the effect of each algorithm component.
The algorithm chooses from 27 shape actions, 3 operation actions and 2 grammar actions to create an
image on a 64× 64 canvas. The 27 shape actions have their size and position in the canvas as well as
the type of geometry (circle, triangle or square) encoded in the selection. We separated our dataset by
the length of the program, which also dictates the number of shapes in the image. Programs of length
5 have 3 shapes and 2 operation actions, those of length 7 have 4 shapes and 3 operation actions, etc.
For each length of program, we generated all possible combinations of shape actions and operation
actions and then filtered out duplicates and empty images. Images were considered duplicates if no
more than 120 pixels differ between the two and are considered empty if there are no more than 120
pixels on the canvas. The training set size for length 5, 7, and 9 programs are 3600, 4800, 12000,
respectively and the testing set sizes are 586, 789 and 4830, respectively.

For this dataset, we used 4 beams for each sample to approximate the objective functions. The
coefficient for negative entropy is 0.02 and the learning rate is 0.02.

The results of the experiment confirmed our design of the algorithm. We compared each algorithm
component’s effect on the learning process on the length 7 program dataset. When we train the model
without beam search, the training process is not able to get out of a discrete local optimum as seen in
Figure 2 (Left). When we take out the entropy term in the objective function, the reward function
appears like a staircase with very long transition time between each improvement Figure 2 (Middle).
This would make the algorithm very difficult to scale up to problems with bigger actions spaces or
longer program length. Without the tree structure, the reward stays around 0.3 which is the lowest
possible reward Figure 2 (Middle) because the program is unable to generate a valid program to
render. In order to train on the length 9 program dataset, we employed curriculum learning to improve
the training result. The test reward is shown in Figure 2 (Right). For some example outputs of the
algorithm tested on the length 9 dataset, please refer to 3 in Appendix A.1.

5 Discussion

In this paper, we proposed an entropy regularized REINFORCE-based algorithm with grammar-
encoded tree LSTM that leverages grammatical structures to parse a CSG image into context-free
grammar. To our knolwedge, we are the first to successfully parse a CSG image with a non-
differentiable renderer into CFG using unsupervised learning. We demonstrated the importance of
each of our design features. For a future direction, it would be interesting to extend our work into
continuous parameterized action spaces.
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Figure 3: Some example outputs of our algorithm. On each row there are two examples each occupying 5
columns. The leftmost images of the five columns are the target images and the four images to its right are the
output of four beams. Its corresponding reward is on top of each image

A Appendix

A.1 Example Output

Please refer to 3 for some example output of the algorithm.

A.2 Algorithm
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Algorithm 1 Beam Search Tree LSTM
Input: Target Images T , Number of beams K
Initialize: Grammar stack S, Image stack I , Beam set B

Encode the target image Tencoded ← Encode(T )
B = {si|si = ∅}
H(v) = 0
for j := 0 to n do

for i := 1 to k do
Pop the grammar stack g ← Si.pop()
Embed the grammar symbol gembedded ← Embed(g)
Encode the image stack Iencoded ← Encode(I)
Hiddenj ← LSTM(gembedded, Iencoded, Tencoded, Hiddenj−1)
pi,j ← softmax(f(Hiddenj) +Mask(g))
Estimate entropy at this node vi,j : H(vi,j) = pi,j · logpi,j

Initialize G̃j+1 = ∅
Calculate the log probability of the beam including the children φi,j+1 = 1 · φi,j + logpi,j

Sample the Gumbel scores Gφi,j+1
∼ Gumbel(φi,j+1)

Zi,j+1 = max(Gφi,j+1
)

G̃φi,j+1 ← − log(exp (−1 ·Gφi,j ))− exp (−1 · Zi,j+1) + exp (−Gφi,j+1
)

Add the values in G̃φi,j+1
to G̃j+1: G̃j+1 ← G̃j+1 ∪ G̃φi,j+1

end for
Estimate the entropy H(v)← H(v) + 1

Wj(S)

∑
j

pθ(s
i
j)

qθ,κ(sj)
H(vi,j)

Choose top k values in G̃j+1 to expand
Update B = {si|si = si ∪ vi,j+1 for the chosen i, j + 1}

end for
Render the images x’s for the sequences si’s
Generate the rewards of the images f(x)’s
Maximize the following objective: Ex∼pθ(x)[f(x)]− αH(v) as defined in (2) and (3)
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