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Abstract

Attribution methods have been developed to explain the decision of a machine
learning model on a given input. These methods identify quantitative attribution
of different features of an input for a decision made by a machine learning (ML)
model. This enables top-down causal inference from features to input after a
bottom-up classification decision has been made by an ML model. We define the
causal neighborhood of an input by incrementally masking high attribution features,
and generating new inputs. While bottom-up classification models have been shown
to be brittle and non-robust, the top-down causal inference presents an effective
approach to detect adversarial attacks or unexpected perturbations. In this paper,
we study the robustness of machine learning models on benign and adversarial
inputs in its causal neighborhood. We experimentally show that ML models are
robust in the causal neighborhood of the benign inputs but the adversarial inputs
rely on few high attribution features, and consequently lack robustness in their
causal neighborhood. We demonstrate our results on the state-of-the-art adversarial
attack methods such as DeepFool, FGSM, CW and PGD, as well as physically
realizable adversarial examples. Our results indicate that heavy concentration of
attribution over few features in physically realizable adversarial examples, makes
our approach specially suitable for detecting them. Such a defense approach is
independent of training data and attack method, and is a first step towards the use
of causal inference in making ML models resilient.

1 Introduction

The adoption of deep learning systems in safety-critical or high-security applications is inhibited due
to two major concerns: their brittleness to adversarial attack methods that can make imperceptible
modification to inputs and trigger wrong decisions [1, 2], and the lack of interpretability [3]. Sig-
nificant progress has also been made towards adversarial robustness [4–6] and explainability [7–9].
In this paper, we investigate this connection between the resilience to adversarial perturbations and
the attribution-based explanation of individual decisions by a machine learning model. Our study
is motivated by recent arguments on robustness of causal learning [10], the use of causal inference
to compute the confidence of a machine-learned model on a given input [11], and Kahneman’s
decomposition [12] of cognition into two layers: System 1, or the intuitive system learning an
anti-causal model (from input to the label/intent), and System 2, or the deliberate system doing
causal inference (from intent to input). The original machine learning model represents the System
1 and the attribution analysis presented in this paper is the deliberative System 2 that can detect
inconsistencies in System 1 by analyzing the attribution generated by the model on the input. Our
central hypothesis is that adversarial inputs are imperceptibly similar to benign inputs and are still
able to trigger wrong decisions because of a relatively small number of features with high attribution
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Figure 1: (From left to right) original image; masking its top 0.2% attribution; masking its top 2%
of attribution; image with a baseball patch generated using LaVAN method; masking its top 0.2%
attribution; (rightmost) masking top 2% of its top attributions. Most pixels are masked from the noise
patch leading to a change in label. Original images are robust to pixel masking and retain their labels.

in the machine learning model. This concentration of causal attributions is central to their physical
realizability and perceptual indistinguishably from benign inputs.

Adversarial perturbations often create a small fraction of high-attribution features responsible for the
change in the output model without visible change in the input. Consequently, it is possible to identify
an adversarial example by examining inputs in its causal neighborhood obtained by incrementally
masking the features which have high magnitude attributions. While benign inputs are robust and
the model does not change its decision on the input in this neighborhood, the decision of the model
is not robust on the adversarial examples. The localized nature of existing physically realizable
attacks naturally concentrates the high attribution features. The ease of detection of these adversarial
examples suggests a trade off in physical realizability and indistinguishability in attribution space.
In this paper, we propose a defense based on Kahneman’s decomposition of cognition into intuitive
System 1 and deliberative System 2. This approach does not rely on analyzing training data such as
manifold-based defense [13, 14], or statistical signature of the machine learning models such as logit
pairing [6], or methods that exploit the knowledge of specific attack for adversarial training [15].

2 Background

Adversarial examples [16] which produce incorrect decision from machine learning models can
be obtained using a number of techniques [17, 5, 18–20] which are now available in tools such as
Cleverhans [2]. While these methods rely on diffused digital transformation of the input, physically
realizable attacks in form of patches or stickers that can be added to an image have also been
developed. Adversarial patch [21] and localized and visible adversarial noise(LaVAN) [22] methods
generate patches that are universal and can be used to attack any image and are targeted to force
classifier to output a particular output label. Their goal is to generate universal noise “patches” that
can be physically printed and put on any image, in either a black-box (when the attacked network is
unknown) or white-box (when the attacked network is known) setup. A related attack is proposed in
[23] to investigate the blind-spots of state-of-the-art image classifiers, and the kinds of noise that can
cause them to misclassify. More diffused universal adversarial digital perturbations [24] have also
been proposed that can be applied to any input.

A number of attribution techniques have been recently proposed in literature that assign positive
and negative importance to an input feature for a given decision of the machine learning model.
Attributions can correspond to the actual decision or to counterfactuals. Many prominent attribution
methods are based on the gradient of the predictor function with respect to the input [25, 26, 9].
These approaches have been extended to counterfactual analysis [27] which has roots in cooperative
game theory and revenue division. Counterfactual analysis is difficult when the number of possible
output labels is large. We restrict our study to analysis of the actual attribution. Different attribution
methods are compared in [28]. The sensitivity of these attributions to perturbations in the input are
studied in [29] and adversarial attacks are presented to create perceptively indistinguishable images
with the same prediction label but different attributions. Their results indicate that both System 1 and
System 2 in our proposed approach can be independently attacked.

The goal of this paper is to combine both System 1 and System 2 to create a more resilient cognition
model than any one of them alone. We use the attributions to identify the cause of the current decision
of the machine learning model, and then construct a generator that can mask high-attribution features
to explore the causal neighborhood of the input and observe model’s behavior in this neighborhood.
While learning is still in the anti-causal direction, we add a layer of causal deliberative System 2 that
reasons in forward direction to evaluate the robustness of the obtained attribution.
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3 Approach

For a given neural network machine learning modelM and input x, the attribution for the model output
M(x) is computed for the features F1, F2, . . . , Fk of the input. We adopt a simple masking model
for causal generation of new inputs from the features. Given an input x with baseline x′, the masking
generator G can select a subset of n ≤ k features M = {m1,m2, . . .mn} to be masked and generate
a new input G(x,M) such that Fi(G(x,M)) = Fi(x) for i 6∈ M and Fi(G(x,M)) = Fi(x

′) for
i ∈ M . For example, if the baseline is a dark image and the features are pixels of the image, the
masking model selects a set of pixels M of an input image and makes them dark. We use the
attribution over features and this masking model to define a causal neighborhood of the input x as:

Definition: Given an input x with features F1, F2, . . . , Fk and the corresponding attributions
IG(F1(x)), IG(F2(x)), . . . , IG(Fk(x)), we sort the features in decreasing order of their attri-
bution Fj1 , Fj2 , . . . , Fjk such that the attributions IG(Fj1(x)) ≥ IG(Fj2(x)) ≥ . . . ≥ IG(Fjk(x)).
We define a δ causal neighborhood of the input x for 0 ≤ δ ≤ 1 by constructing new inputs G(x,M)
obtained via masking features M ⊆ {Fj1 , Fj2 , . . . , Fjdδke}, that is,

Nδ(x) = {G(x,M)|M ⊆ {Fj1 , Fj2 , . . . , Fjdδke}}

An input (benign or adversarial) is δ robust with respect to its attributions if the machine learning
model produces the same output on all inputs in Nδ(x). We restrict our study to positive attributions.
We denote this restricted neighborhood asN+

δ (x) where all features Fji in M are guaranteed to have
positive attributions, that is, IG(Fji(x

M )) > 0 for all xM ∈ N+
δ (x). The monotonicity of M with

respect to the inclusion of features positive attributes leads to the following theorem:

Theorem: If the outputs of a machine learning model M on an input x and for some input in its
causal neighborhood xM ∈ N+

δ (x) are different, then the model M also produces different outputs
on the input x and G(x,Mδ) where Mδ = {Fj1 , Fj2 , . . . , Fjdδke}.
This monotonicity enables us to check the robustness of a machine learning model on an input in its
causal neighborhood by just considering the farthest input. If the model produces different output,
then it is not robust on this input. We can lift the computation of the robustness of machine learning
model M on input x to define the attribution sensitivity on a dataset X as follows: S(M,X, δ) =

1 − |{x|x∈X and ρ(M,x)≤δ}|
|X| where | · | denotes the size of the set. The central goal of the paper is

to study the connection between attributions and adversarial robustness, and to argue the need for
Kahneman’s System 1 and System 2 cognition for more robust perception. We accomplish this by
computing the attribution sensitivity on original datasets and adversarially perturbed datasets. An
effective adversarial attack must have smaller attribution sensitivity similar to original inputs to avoid
detection.

Figure 2: The architecture of the proposed approach motivated by the two level Kahneman’s decom-
position of cognition. We view the ML model as System 1 and use attribution methods (Integrated
Gradient in our experiments) to obtain features with positive and negative attributions. In this example
with the MNIST dataset, we see that the adversarial perturbation that causes misclassification of
9 into 4 also significantly changes the attributions. For example, the top part of the perturbed 9
(misclassified as 4) has negative attribution. In deliberative System 2, we perform reasoning in the
causal direction, and mask the high attribution features (pixels in this case) to obtain a number of
input instances in the causal neighborhood of the original image. The original attributions are robust
but the adversarial attributions are not robust which causes the model to assign different labels to
images in the causal neighborhood of adversarial examples.
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Figure 3: (Left) Percentage of changed labels and percentage of masked attributions for adversarial
attacks FGSM, DeepFool, CW, and PGD on MNIST dataset. (Center) Percentage of changed labels
and fraction of masked pixels on ImageNet database. FGSM attacks with different ε = 2, 5, 10 are
evaluated for ImageNet. (Right) Percentage of correct labels and masked attributions for images
from the ImageNet dataset is shown in blue. Banana patch and toaster patch were generated using
adversarial patch method [21]. Baseball patch was generated using LaVAN method [22].

4 Results

We use Integrated Gradients [9] to obtain attributions to perform attribution sensitivity analysis on
three datasets to test our hypothesis that adversarial examples are less robust (more sensitive) to
masking in the attribution space when compared to original images:
MNIST Dataset and Digital Attacks: Removing 20% of the attributions does not cause change in
the labels assigned to 81% of the MNIST images. In contrast, masking the top 20% attribution has a
much stronger impact on the adversarial images. As shown in Figure 3, this changes the assigned
labels of adversarial images generated using FGSM, DeepFool, CW and PGD by 72%, 67%, 53%,
and 68% respectively.
ImageNet Dataset and Digital Attacks: The masking of a small number of high-attribution pixels
does not cause a change in the labels of the original ImageNet images as shown in Figure 3. Labels
assigned to 82% of ImageNet images remain unchanged when pixels corresponding to top 0.1%
of attributions are masked. The fraction of unchanged labels remains at 67% even when pixels
corresponding to top 0.4% of attributions are masked. In contrast, 76%, 71% and 75% of the
images changed label on masking 0.4% of pixels corresponding to top attributions for the adversarial
examples generated using FGSM with different epsilon values. This percentage for PGD(ε = 2) was
71%, 97% for CW and 95% for DeepFool.
ImageNet Dataset and Physical Attacks: Using 1000 images from the ImageNet dataset, we created
adversarial patch and LaVAN attacks for the InceptionV3 deep learning model. For adversarial patch
attack we used a patch size of 25% for two patch types: banana and toaster. We observe that there
was a change in label for 99.71% of images having the banana patch on masking top 0.4% of high
attribution pixels. Similarly, 98.14% of images having the toaster patch changed label on masking
top 0.4% of high attribution pixels. For LaVAN attack we used baseball patch of size 50× 50 pixels.
We observe that 99.20% of images having baseball patch changed label when we masked top 0.4%
of attributions. Detection percentages for various pixel masking percentages for images with banana,
toaster and baseball patch are shown in Figure 3. We observe that most of the high attribution pixels
in adversarial images is localized in the patch and masking these pixels leads to a change in the image
label. An example of this behaviour can been seen for the LaVAN method in Figure 1, where most of
the masking is localized around the baseball patch.

5 Conclusion

We devise a new defense approach for machine learning models that uses attribution and incremental
masking for filtering out adversarial examples. We propose such a deliberative masking based analysis
approach as System 2 of Kahneman’s two layer cognition system with the actual machine learning
model serving as System 1. We demonstrate the effectiveness of our approach on a set of benchmarks
that include diffused digital perturbations as well as physically realizable perturbations.
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