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1 Introduction

Generative approaches to 3D scene perception and physical reasoning are increasingly common [1,
2, 3, 4, 5, 6, 7]. There is a widespread need for scene models that can incorporate planar and point-
wise contacts between physical objects, and ensure that objects do not inter-penetrate [8]. Generic
priors on 6DOF poses — and bottom-up neural networks that de-render images into scenes [6] —
typically violate these constraints.

This abstract introduces a family of generative models for 3D scenes that respect pairwise phys-
ical contact constraints between objects. The technical innovation is to represent scenes in terms
of hybrid symbolic-numerical scene graphs over objects, where the edges correspond to parameter-
ized contact relationships (see Figure 1). Given this representation, 3D poses can be generated via
a graph traversal. We show how to define prior distributions on scene graphs, and how 3D scene
understanding can be phrased as posterior inference over the scene graph. This abstract also shows
preliminary evidence that it is possible to infer scene graph parameters from empirical data, “de-
rendering” images into structured 3D scene representations. This is implemented using the Gen
probabilistic programming language. Finally, this abstract briefly discusses representation and in-
ference challenges that need to be addressed to scale up the approach to more complex, real-world
scenes.

2 Scene graphs

In this section we define a scene graph that can explicitly model pairwise physical contact relation-
ships between objects. In this framework, a scene graph is a directed dependency tree over objects
that have parametric 3D shapes. Object types come from an extensible library. Edges in the graph
have parameters that describe how the pose for an object is generated as a function of the pose and
shape of the object it depends on. Crucially, edge parametrizations can represent physical contact
constraints that would not be represented by a collection of independent 6DOF poses for each object
in the scene (see Figure 3). We give examples of scene graphs involving objects of two types: floor
planes and cubes. We also show (see Figure 1) the effect of different graph structures on the contin-
uous parameterization by representing the same physical scene using two different scene graphs.

Let S be a finite set of possible shape types. For each s ∈ S let Ψs denote the set of possible
(continuous) shape parameters for shape type s. For each pair of shape types s, t ∈ S let Cs,t denote
a finite set of possible contact types for these two shape types. For each possible contact type c let
Φc denote the set of (continuous) contact parameters for contact type c. Throughout, we use the
convention that V denotes a set of vertices, and (V,E) denotes a directed tree over vertices with
edges E ⊂ V × V . Let πE(i) for i ∈ V denote the parent of vertex i, with value ⊥ if vertex i is the
root.

Workshop on Perception as Generative Reasoning, NeurIPS 2019, Vancouver, Canada.



Figure 1: Several random scenes conditioned on each of three contact graphs. For a depth-1 scene
graph (black), any time two objects are touching, those objects are also interpenetrating (i.e., violat-
ing a physical constraint) with probability 1. For a scene graph representing a single stack of boxes
on the floor (blue), all the scenes are physically plausible (no interpenetration), and the set of such
scenes is a 15-dimensional submanifold (shown in blue) of the 24-dimensional space of free poses
(shown in gray). In magenta, we show a different scene graph, which represents two stacks of boxes
sitting on the floor. Note that the scene graph does not guarantee non-interpenetration between the
red box and the green box; it only guarantees non-interpenetration between objects that have an edge
between them in the scene graph.

Definition 2.1. Given shape types S, contact types C, shape parametrization Ψ and contact
parametrization Φ, a scene graph G is a tuple G = (V,E, s, c, ψ, φ) where:

• (V,E) is a directed tree where vertices i ∈ V represent objects and edges (i, j) ∈ E
represent directed contact relationships between object i and object j.

• si ∈ S for each object i ∈ V is the shape type for the object.

• ψi ∈ Ψsi for i ∈ V are the shape parameters of object i

• ci ∈ Csπ(i),si is the contact type for the contact between object π(i) and object i.

• φi ∈ Φsπ(i),si
for i ∈ V are the contact parameters for the contact between π(i) and i.

Recursively computing the 6DOF poses of objects Let zi denote the 6DOF pose of vertex i ∈ V .
For notational and implementational convenience, we treat the root node zroot specially: it has no
spatial extent, and its 6DOF pose defines the base coordinate frame with respect to which the pose
of all objects are defined. Given a scene graph G and a 6DOF pose zroot for the root node, we
recursively compute the 6DOF pose of every other node in the graph using the following recursion
over the scene graph tree, where i ranges over all nodes in V except the root node:

zi = fci(φi, ψi, zπ(i), ψπ(i)). (1)

The functions fc for c ∈ C implement the geometry of contact parameterization, namely, how to
compute the pose of the child object (zi) given the contact parameters (φi), the pose of the parent
object (zπ(i)), and the shape parameters of the parent and child objects (ψπ(i) and ψi respectively).
Note that form of fci depends on the contact type ci. In Section A.2 we will use the 6DOF poses of
all objects to compose a depth image of the scene.

Example The framework for scene graphs above gives a great deal of freedom in the choice of
shape types S, contact types C, and how contacts are used to compute 6DOF poses. We now describe
an example. Suppose our set of shapes types includes cubes and planes, so that (cube, plane ∈ S).
We parametrize the shape of a cube using its side length, so that Ψcube := (0,∞). Planes have no
shape parameters (Ψplane is a singleton set). Suppose we want to model the possibility that two
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cubes are in face-to-face contact, and that a cube and a plane are in face-to-face contact. Note that
various other contact types (e.g. point–edge and edge–edge) between cubes and planes are also
possible, but beyond the scope of this paper. Let ccf2f be a token that stands for ‘cube-cube-face-
to-face’ and let cpf2f be a token that stands for ‘cube-plane-face-to-face’. Then we define the set
of contact types for two cubes to be all choices of one face from each cube:

Ccube,cube := {(ccf2f, a, b) : a, b ∈ {1, . . . , 6}} (2)

and the set of contact types for a plane and a cube consists of all choices of (i) a face of the cube
(there are six of these), and (ii) a face of the plane (there are two of these):

Ccube,plane = Cplane,cube := {(cpf2f, a, b) : a ∈ {1, . . . , 6}, b ∈ {0, 1}}. (3)

For face-to-face contacts between cubes we assume that the exterior sides of the two faces are in
contact, and flush with one another. We parametrize these contacts (of type (ccf2f, a, b)) by three
degrees of freedom (two translation and one rotation), so that Φ(ccf2f,a,b) := [0, π/2] × [0, 1] ×
[0, 1] for all a, b ∈ {1, . . . , 6}, as shown in Figure 2.1 For face-to-face contacts between cubes
and planes, the translation parameters are unbounded, so that Φ(cpf2f,a,b) := [0, π/2] × R2 for
all (a, b) ∈ {1, . . . , 6} × {0, 1}. Suppose that we also want to allow objects in the scene have
independent 6DOF poses from one another (e.g. so they are not required to by in physical contact).
We can represent this within our scene graph by introducing an additional shape type frame ∈
S, that has no shape parameters. Then, for each s ∈ S we introduce a contact type Cs,frame =
Cframe,s := {(6dof, frame, s)} with contact parameters Φ(6dof,frame,s) that range over all possible
relative 6DOF poses of the child object with respect to the pose of the parent ‘frame’ object.

Figure 3 shows two different scene graphs involving a plane and three cubes. The two scene graphs
over objects V = {1, 2, 3, 4, 5} represent the same set of 6D poses for all objects, but using different
graph structure. In the first graph, each of the cubes are assumed to be in flush contact with another
object, giving the following graph topology:

1(frame)→ 2(plane)→ 3(cube)→ 4(cube)→ 5(cube).

In the second graph, each object has an independent 6DOF pose, and the graph topology is:

1(frame)→ 2(plane) 1(frame)→ 3(cube) 1(frame)→ 4(cube) 1(frame)→ 5(cube).

Note that these two scene graphs behave differently under the action of inference operations. For
example, in the first graph, if we perturb the contact parameters φ3 of cube 3 ∈ V relative to
its parent object 2 ∈ V , then, the 6DOF poses of descendent objects 4, 5 ∈ V are also affected,
whereas in the second graph they are not.

Scenes in which objects are touching or resting on one another are commonplace, yet cannot be gen-
erated by generic priors on object pose. A crucial property of scene graphs is that by jointly sampling
graph structure and pose given graph structure, one can specify priors that place positive measure on
scenes in which objects are flush against one another, yet locally do not interpenetrate. Compared
to approaches based on optimization subject to constraints [8], this approach greatly reduces both
the number of constraints and the dimension of the state space; any remaining constraints that can-
not be handled this way (e.g., global non-interpenetration between objects separated by many links
in the scene graph) can be incorporated into inference via additional likelihood terms that penalize
violation of those constraints.

Consider Figure 1, which shows three scene graphs that represent qualitatively different scene struc-
tures, along with three scenes sampled from the distribution on images induced by each graph struc-
ture. These images were obtained by generating random parameters, calculating poses induced by
those parameters, and rendering the scenes that result. Scene graphs 1 (blue) and 2 (purple) in-
clude cubes resting on one another, but also exhibit broad variability in pose given those qualitative
constraints.

The semantics of scene graphs may need to be significantly richer before they will be suitable for
accurately describing generic indoor and outdoor scenes in the real world. For example, it might
help to have higher-level edge types, such as “object a is on top of object b,” which encapsulate a

1Here we have assumed that the cubes are rotationally symmetric, and thus assume without loss of generality
we can assume the rotation angle lies in the interval [0, π/2]. A full treatment of optimizing around symmetries
is beyond the scope of this paper.
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latent choice of geometric structure that is guaranteed to satisfy a desired set of higher-level spatial
relationships. It also might help to support qualitative relationships that induce undirected con-
straints on scenes, such as “object a does not touch object b.” It will also be important to integrate
scene graphs with models of physical dynamics subject to contact constraints [9] and also models of
goal-directed behavior of agents based on planning [10] and inverse planning [11, 12]. Additionally,
it is desirable to support arbitrary acyclic scene graphs, not just trees; while possible in principle,
this extension carries the challenge of satisfying the (not always solvable) constraints implied by an
object’s simultaneous relation to multiple parents. In principle, these constraints — such as global
non-interpenetration constraints [8] — could be handled by extensions to the model. We hope to
pursue these extensions in future work.

3 Inference

We now briefly discuss a prototype implementation of a system that infers scene graph structure
from data, written using the Gen probabilistic programming language [13]. (See Appendix A for an
explanation of the joint generative model of scenes and images.) We performed inference via both
MCMC and gradient-based MAP estimation. In the MCMC case, we (i) initialize via importance
resampling, and (ii) perform resimulation Metropolis–Hastings updates [14, 15] to the scene graph
parameters. Note that updates to parameters for upstream edges alter the pose not just for the child
object of the edge, but for all downstream objects. Figure 4 shows the data and some example
inference results. In the gradient case, we fix the scene graph structure and the pose of all but one
object in the scene, and use gradient MAP estimation to infer the pose of the remaining object.
Figure 5 shows the data and some example inference results.

In the current work the MCMC and gradient algorithms were run separately, but it is straightforward
to combine them. In future work we hope to explore hybrid inference strategies that include both
MCMC moves (especially for inferring structure) and gradient moves (for inferring continuous pa-
rameters); we believe such hybrids will be a key innovation towards inference algorithms that are
both general and scalable.

Once a scene graph has been inferred, it is straightforward to use a physics engine to simulate the
trajectories of the physical objects in the scene. We assume that object types have known material
properties, such as mass and elasticity, though an extension to unknown masses and elasticities is
conceptually and technically straightforward [16]. Compared to neural de-animation [6], which de-
renders images into sets of objects with generic poses, our approach infers initial scenes that include
face-to-face contacts. In future work, we hope to develop a scene-graph–friendly version of the
contact-aware dynamics engine from MuJoCo [9]. This would allow for joint inference over initial
conditions and physical object properties, given noisy/low-resolution physics that is still guaranteed
to preserve qualitative contacts between objects.

3.1 Scaling up inference

We are a long way from algorithms that rapidly and robustly infer scene graph structure and param-
eters from data. Some specific approaches that we hope to pursue include (i) birth–death proposals
that create and delete objects [17, 18, 19]; (ii) node and edge parameterizations that facilitate “an-
nealing in” of new objects via both implicit [2] and explicit [20] annealing; (iii) moves that make
large, global adjustments to the scene graph, that implicitly change the blocking of proposals to edge
parameters [21]; and (iv) heuristics for joint inference over scene graph fragments that combine vari-
ational learning with computer-vision heuristics [13, 22]. Combinations of automatic differentiation
(to infer object pose) with bottom up proposals (to detect objects) and SMC (to infer graph structure)
to seem especially promising. Our prototype is implemented in Gen [13], a general purpose proba-
bilistic programming language that makes it possible to apply custom combinations of these kinds
of inference techniques to a broad class of open universe scene graph priors. We hope that the right
combinations of these kinds of inference techniques could make it possible to someday carry out
fully Bayesian de-rendering of realistic physical scenes, producing accurate symbolic descriptions
of real-world images and videos.
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A Generative models of scene graphs and depth images

We use our scene graph formalism as the basis for joint generative models of scenes and images, and
we cast inference of 3D scene geometry from an image as posterior inference in these generative
models. We define prior distributions on scene graphs G, and an observation model p(I;G) that
models an image I as the result of a noisy rendering of the scene graph G. To reduce the effect of
nuisance variables like lighting and texture, we model depth images instead of luminance images.

A.1 Prior distributions on scene graphs

To define probability distributions over scene graphs, including prior and posterior distributions,
we first require a measure space MS,C,Ψ,Φ = (X,Σ, µ) on scene graphs, which depends on
(S, C,Ψ,Φ). Note that we can separate each scene graph G into its discrete component (V,E, s, c)
and its continuous component (ψ, φ). For each discrete component (V,E, s, c) of the graph, we
assume that the continuous component (ψ, φ) has fixed dimension and a given base measure (e.g.
Lebesgue). We construct the stock measure µS,C,Ψ,Φ from the counting measure on the discrete
component with the appropriate base measures for the continuous components. We then represent
probability distributions on scene graphs by density functions p(G) with respect to the stock measure
µS,C,Ψ,Φ.

It is possible to define open-universe probability models [18, 19] over the space of scene graphs,
in which the number of objects is unbounded a-priori, but finite for any given scene. For example,
we can use a consistent probabilistic context free grammar to define a normalized prior distibution
over all possible discrete components (V,E, s, c), including all possible scene graph topologies.
Alternatively, we can define prior distributions on scene graphs that that admit an unbounded number
of nodes, but with a restricted graph topology.

Example open-universe prior distribution We now give an example of this second approach.
Algorithm 1 describes a generative process for producing scene graphs that have two classes of
objects: ‘parent’ objects and ‘child’ objects. The number of parent objects and the number of
child objects are independently sampled from Poisson distributions. Shape types are independently
drawn for each parent object from a uniform distribution over the set of possible shapes S. The
shape parameters are sampled from a shape-type-dependent prior distribution denoted ps(ψ). The
shape type and shape parameters for child objects are also drawn independently. Each child object is
independently and uniformly assigned to a parent object, and given parent shape type sπ(i) and child
shape type si, the contact type ci and contact parameters φi are sampled from prior distributions
psπ(i),si(ci) and pci(φi) respectively.

Let Vk denote the function that returns the set of vertices at depth k, where k = 0 is the root. The
prior density of this prior distribution on graphs G relative to the stock measure µS,C,Ψ,Φ is denoted
p(G) and is zero if depth of the graph (including the root) is zero or more than three, or if the root
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Algorithm 1: An open-universe prior distribution on scene graphs.
n1 ∼ Poisson(λ1)
n2 ∼ Poisson(λ2)
V ← {root} ∪ {(parent, i) : i ∈ 1, . . . , n1} ∪ {(child, j) : j ∈ 1, . . . , n2}
sroot ← frame
E ← {}
for v ∈ {(parent, i) : i ∈ 1, . . . , n1} do

sv ∼ Uniform(S)
ψv ∼ psv (·)
π(v)← root
cv ← (6dof, frame, sv)
φv ∼ Uniform6DOFPose()

end
for v ∈ {(child, j) : j ∈ 1, . . . , n2} do

sv ∼ Uniform(S)
ψv ∼ psv (·)
π(v) ∼ Uniform({(parent, i) : i ∈ 1, . . . , n1})
cv ∼ psπ(v),sv (·)
φv ∼ pcv (·)

end

node v has sv 6= frame. Otherwise, the prior density is:

p(G) :=

Pois(|V1(G)|;λ1)· Prior on number of parent objects
Pois(|V2(G)|;λ2)· Prior on number of child objects∏
v∈V

1
|S|psv (ψv)· Prior on shape types and shapes parameters∏

v∈V2(G)
1

|V1(G)| · Uniform prior on parent assignments∏
v∈V2(G) psπ(i),sv (cv)pcv (φv)· Prior on contact types and contact parameters∏
v∈V1(G) p(6dof,frame,sv)(φv) Prior on 6DOF pose of parent objects

(4)

A.2 Likelihood model for depth images

We assume we have access to a function gs for each shape type s ∈ S that computes the 3D mesh
geometry yi of an object i from its pose zi and its shape parameters ψi. To compute a depth
rendering of a scene, we first compute the 6DOF poses zi of each object, using Equation (1). Then,
we apply the mesh geometry function for each object i:

yi = gsi(zi, ψi). (5)

Then, we use standard 3D graphics techniques to compose a depth image (modeling occlusion via
the ‘depth test’). Suppose the depth image isM×N pixels. Let d : G → RM×N denote the function
that starts with a scene graph G, recursively computes 6DOF poses via Equation (1), computes mesh
geometry via Equation (5), and returns the composed depth image. Note that the 6DOF pose of the
root node zroot represents the pose of the scene relative to the camera. We model an observed depth
image I as a blurred and noisy variant of d(G). Let b : RM×N → RM×N denote the fuction that
applies Gaussian blur to a depth image, producing a new depth image. We then model each pixel as
generated from the blurred depth image, with pixel-wise Gaussian noise with variance σ2:

p(I;G) :=

M∏
m=1

N∏
n=1

Norm(Im,n; b(d(G))m,n, σ) (6)

A.3 Differentiating the likelihood with respect to continuous scene graph parameters

A key property of scene graphs is they are partially differentiable: given the discrete components
(V,E, s, c) of a graph G = (V,E, s, c, ψ, φ), it is possible to calculate gradients of the joint proba-
bility density over the continuous components (ψ, φ). Here, we show how to compute gradients of
the depth image with respect to the contact parameters φ. A key property of these gradients is that
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the gradient with respect to contact parameters for one object influences the poses of all objects that
descend from it. Let desc(i) denote the set of descendents of object i in the tree (V,E), and let
path(j, i) denote the set of vertices on the path from j to i (not including i). Then:[

∂I
∂φi

]
=

∑
j∈desc(i)

[
∂I
∂yj

] [
∂yj
∂zj

] [
∂zj
∂φi

]
(7)

=

 ∑
j∈desc(i)

[
∂I
∂yj

] [
∂yj
∂zj

] ∏
k∈path(j,i)

[
∂zk
∂zπ(k)

][ ∂zi
∂φi

]
(8)

where square brackets indicate Jacobian matrices. To implement these gradients efficiently and in-
crementally during inference, we can maintain at every vertex i ∈ V the current Jacobian [∂I/∂zi].
Whenever the shape type sj , shape parameters ψj , contact type cj , or contact parameters ψj of an
object j ∈ V are modified, we update the Jacobians [∂I/∂zi] for only the subset of objects that
could influence the value of the Jacobian. Then, the Jacobian with respect to contact parameters for
object i is [

∂I
∂φi

]
=

[
∂I
∂zi

] [
∂zi
∂φi

]
. (9)

The efficiency of this approach is governed by the size of the set of parameters that could influence
the value of the Jacobian

[
∂I
/
∂φj

]
. This set contains (at most) all parameters of ancestors of object

j (along the path to the root), as well as the mesh geometries yk of all objects (as the Jacobian[
∂I
/
∂φj

]
depends on all yk’s jointly). In future work, we hope to improve this efficiency by

incorporating known correspondences between topological proximity in the scene graph and spatial
proximity in the rendered image, so that recomputation of image Jacobians is limited to only a small
subset of the mesh geometries yk. This is analogous to to the heuristics employed by game engines
to avoid redrawing objects which are known not to have changed appreciably.
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Figure 2: Concrete parameterization of a specific type of surface contact: planar contact between
two square surfaces. In this parameterization, θ represents the angle between the two squares, which
by symmetry can be assumed to lie in the interval 0 ≤ θ < π/2 (it is also possible to break the
symmetries in the cube). Conditioned on θ, there is an interval [xmin, xmax] of x-offsets that maintain
the child square (orange) being in contact with the parent square (blue). Conditioned on this x-offset
and θ, there is similarly an interval [ymin, ymax] of possible y-offsets. We normalize these x- and y-
offsets by an affine transformation to obtain the parameters u, v ∈ [0, 1]. Similarly, given θ, u, v, we
can apply the same transformation in reverse to obtain x- and y-offsets. Finally, the known angle θ
and the fact that the two squares are in flush contact (i.e. their outward surface normals are exactly
opposite) uniquely determine the relative 6D pose, which is an element of R3 × SO3(R).

Figure 3: Comparison of the parameter spaces for two scene graphs that describe the same scene
(the frame root node is ommited in both cases). Right: A scene graph with depth 1. The continuous
parameters are 24-dimensional, comprising a full 6D pose for each object. Left: A scene graph with
depth 2. The yellow cube is in face-to-face contact with the red cube, the red with the green, and
the green with the floor. There are 15 continuous parameters, comprising a 6DOF pose of the floor
object and 3 parameters for each contact relation. (Shape parameters of cubes ommited in both cases
for simplicity). Figure 2 describes the face-to-face contact parametrization for pairs of cubes.
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Figure 4: Inference of latent scene parameters conditioned on a specific contact graph structure,
and deterministic forward-simulation of physics starting with the inferred scene. The observa-
tion is a low-resolution synthetic depth image generated from the prior. The inference uses block
Metropolis–Hastings on the contact parameters on the parameters assigned to a single edge of the
graph at a time, and the initial state is chosen by importance sampling from the prior (100 particles).
Physical simulation then allows us to make physical inferences about the original scene, including
qualitative inferences such as whether the tower is stable.

Figure 5: Inference of the continuous contact paremeters of the yellow cube relative to the red cube.
Top-left: Observed image (we show RGB here for visual clarity; the input was actually a depth
image). Right: A rendering of the inferred parameters after t gradient steps, for t = 0, 2, 8, 12,
starting from a randomly initial state; we see convergence after 12 steps. Bottom-left: Plot of
log-likelihood of the current state versus number of inference steps, for 10 random initializations
of gradient ascent. Note that every state in each gradient ascent trajectory satisfies the qualitative
constraint that the cubes are stacked in flush contact with each other, which is encoded explicitly
in the scene graph G (which is fixed in this scenario). We differentiate the log-likelihood of the
continuous parameters (θ, u, v) ∈ [0, π/2]× [0, 1]× [0, 1] as described in Figure 2 under the model
in Equation (6), with a uniform prior, using a fixed step size α = 0.05.
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